Mei-Ling Han
Monash University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mei-Ling Han.
Journal of Natural Products | 2017
Charles A. Galea; Mei-Ling Han; Yan Zhu; Kade D. Roberts; Jiping Wang; Philip E. Thompson; Jian L; Tony Velkov
The increasing prevalence of polymyxin-resistant bacteria has stimulated the search for improved polymyxin lipopeptides. Here we describe the sequence and product profile for polymyxin D nonribosomal peptide synthetase from Paenibacillus polymyxa ATCC 10401. The polymyxin D synthase gene cluster comprised five genes that encoded ABC transporters (pmxC and pmxD) and enzymes responsible for the biosynthesis of polymyxin D (pmxA, pmxB, and pmxE). Unlike polymyxins B and E, polymyxin D contains d-Ser at position 3 as opposed to l-α,γ-diaminobutyric acid and has an l-Thr at position 7 rather than l-Leu. Module 3 of pmxE harbored an auxiliary epimerization domain that catalyzes the conversion of l-Ser to the d-form. Structural modeling suggested that the adenylation domains of module 3 in PmxE and modules 6 and 7 in PmxA could bind amino acids with larger side chains than their preferred substrate. Feeding individual amino acids into the culture media not only affected production of polymyxins D1 and D2 but also led to the incorporation of different amino acids at positions 3, 6, and 7 of polymyxin D. Interestingly, the unnatural polymyxin analogues did not show antibiotic activity against a panel of Gram-negative clinical isolates, while the natural polymyxins D1 and D2 exhibited excellent in vitro antibacterial activity and were efficacious against Klebsiella pneumoniae and Acinetobacter baumannii in a mouse blood infection model. The results demonstrate the excellent antibacterial activity of these unusual d-Ser3 polymxyins and underscore the possibility of incorporating alternate amino acids at positions 3, 6, and 7 of polymyxin D via manipulation of the polymyxin nonribosomal biosynthetic machinery.
ACS Infectious Diseases | 2017
Mei-Ling Han; Hsin-Hui Shen; Karl A. Hansford; Elena K. Schneider; Sivashangarie Sivanesan; Kade D. Roberts; Philip E. Thompson; Anton P. Le Brun; Yan Zhu; Marc-Antoine Sani; Frances Separovic; Mark A. T. Blaskovich; Mark A. Baker; Samuel M. Moskowitz; Matthew A. Cooper; Jian Li; Tony Velkov
Octapeptins are cyclic lipopeptides with a broader spectrum of activity against fungi and polymyxin-resistant Gram-negative and Gram-positive bacteria. In the present study, we investigated the interaction of octapeptin A3 with asymmetric outer membrane models of Gram-negative pathogen Pseudomonas aeruginosa using neutron reflectometry, together with fluorimetric and calorimetry methods. For the first time, our neutron reflectometry results reveal that the interaction of octapeptin A3 with the Gram-negative outer membrane involves an initial transient polar interaction with the phospholipid and lipid A headgroups, followed by the penetration of the entire octapeptin molecule into the fatty acyl core of the outer membrane. This mechanism contrasts with that of polymyxin B, which specifically targets lipid A, whereas octapeptins appear to target both lipid A and phospholipids. Furthermore, the mechanism of octapeptins does not appear to be highly dependent on an initial complementary electrostatic interaction with lipid A, which accounts for their ability to bind to lipid A of polymyxin-resistant Gram-negative bacteria that is modified with cationic moieties that act to electrostatically repel the cationic polymyxin molecule. The presented findings shed new light on the mechanism whereby octapeptins penetrate the outer membrane of polymyxin-resistant Gram-negative pathogens and highlight their potential as candidates for development as new antibiotics against problematic multi-drug-resistant pathogens.
GigaScience | 2018
Yan Zhu; Tobias Czauderna; Jinxin Zhao; Matthias Klapperstueck; Mohd Hafidz Mahamad Maifiah; Mei-Ling Han; Jing Lu; Björn Sommer; Tony Velkov; Trevor Lithgow; Jiangning Song; Falk Schreiber; Jian Li
Abstract Background Pseudomonas aeruginosa often causes multidrug-resistant infections in immunocompromised patients, and polymyxins are often used as the last-line therapy. Alarmingly, resistance to polymyxins has been increasingly reported worldwide recently. To rescue this last-resort class of antibiotics, it is necessary to systematically understand how P. aeruginosa alters its metabolism in response to polymyxin treatment, thereby facilitating the development of effective therapies. To this end, a genome-scale metabolic model (GSMM) was used to analyze bacterial metabolic changes at the systems level. Findings A high-quality GSMM iPAO1 was constructed for P. aeruginosa PAO1 for antimicrobial pharmacological research. Model iPAO1 encompasses an additional periplasmic compartment and contains 3022 metabolites, 4265 reactions, and 1458 genes in total. Growth prediction on 190 carbon and 95 nitrogen sources achieved an accuracy of 89.1%, outperforming all reported P. aeruginosa models. Notably, prediction of the essential genes for growth achieved a high accuracy of 87.9%. Metabolic simulation showed that lipid A modifications associated with polymyxin resistance exert a limited impact on bacterial growth and metabolism but remarkably change the physiochemical properties of the outer membrane. Modeling with transcriptomics constraints revealed a broad range of metabolic responses to polymyxin treatment, including reduced biomass synthesis, upregulated amino acid catabolism, induced flux through the tricarboxylic acid cycle, and increased redox turnover. Conclusions Overall, iPAO1 represents the most comprehensive GSMM constructed to date for Pseudomonas. It provides a powerful systems pharmacology platform for the elucidation of complex killing mechanisms of antibiotics.
Journal of Antimicrobial Chemotherapy | 2018
Sue C Nang; Faye Morris; Michael J. McDonald; Mei-Ling Han; Jiping Wang; Richard A. Strugnell; Tony Velkov; Jian Li
Objectives The discovery of mobile colistin resistance mcr-1, a plasmid-borne polymyxin resistance gene, highlights the potential for widespread resistance to the last-line polymyxins. In the present study, we investigated the impact of mcr-1 acquisition on polymyxin resistance and biological fitness in Klebsiella pneumoniae. Methods K. pneumoniae B5055 was used as the parental strain for the construction of strains carrying vector only (pBBR1MCS-5) and mcr-1 recombinant plasmids (pmcr-1). Plasmid stability was determined by serial passaging for 10 consecutive days in antibiotic-free LB broth, followed by patching on gentamicin-containing and antibiotic-free LB agar plates. Lipid A was analysed using LC-MS. The biological fitness was examined using an in vitro competition assay analysed with flow cytometry. The in vivo fitness cost of mcr-1 was evaluated in a neutropenic mouse thigh infection model. Results Increased polymyxin resistance was observed following acquisition of mcr-1 in K. pneumoniae B5055. The modification of lipid A with phosphoethanolamine following mcr-1 addition was demonstrated by lipid A profiling. The plasmid stability assay revealed the instability of the plasmid after acquiring mcr-1. Reduced in vitro biological fitness and in vivo growth were observed with the mcr-1-carrying K. pneumoniae strain. Conclusions Although mcr-1 confers a moderate level of polymyxin resistance, it is associated with a significant biological fitness cost in K. pneumoniae. This indicates that mcr-1-mediated resistance in K. pneumoniae could be attenuated by limiting the usage of polymyxins.
International Journal of Molecular Sciences | 2018
Raad Jasim; Mei-Ling Han; Yan Zhu; Xiaohan Hu; Maytham Hussein; Yu-Wei Lin; Qi (Tony) Zhou; Charlie Dong; Jian Li; Tony Velkov
Gram-negative bacteria produce outer membrane vesicles (OMVs) as delivery vehicles for nefarious bacterial cargo such as virulence factors, which are antibiotic resistance determinants. This study aimed to investigate the impact of polymyxin B treatment on the OMV lipidome from paired polymyxin-susceptible and -resistant Klebsiella pneumoniae isolates. K. pneumoniae ATCC 700721 was employed as a reference strain in addition to two clinical strains, K. pneumoniae FADDI-KP069 and K. pneumoniae BM3. Polymyxin B treatment of the polymyxin-susceptible strains resulted in a marked reduction in the glycerophospholipid, fatty acid, lysoglycerophosphate and sphingolipid content of their OMVs. Conversely, the polymyxin-resistant strains expressed OMVs richer in all of these lipid species, both intrinsically and increasingly under polymyxin treatment. The average diameter of the OMVs derived from the K. pneumoniae ATCC 700721 polymyxin-susceptible isolate, measured by dynamic light scattering measurements, was ~90.6 nm, whereas the average diameter of the OMVs isolated from the paired polymyxin-resistant isolate was ~141 nm. Polymyxin B treatment (2 mg/L) of the K. pneumoniae ATCC 700721 cells resulted in the production of OMVs with a larger average particle size in both the susceptible (average diameter ~124 nm) and resistant (average diameter ~154 nm) strains. In light of the above, we hypothesize that outer membrane remodelling associated with polymyxin resistance in K. pneumoniae may involve fortifying the membrane structure with increased glycerophospholipids, fatty acids, lysoglycerophosphates and sphingolipids. Putatively, these changes serve to make the outer membrane and OMVs more impervious to polymyxin attack.
Antimicrobial Agents and Chemotherapy | 2018
Mei-Ling Han; Yan Zhu; Darren J. Creek; Yu-Wei Lin; Dovile Anderson; Hsin-Hui Shen; Brian T. Tsuji; Alina D. Gutu; Samuel M. Moskowitz; Tony Velkov; Jian Li
ABSTRACT Multidrug-resistant Pseudomonas aeruginosa presents a global medical challenge, and polymyxins are a key last-resort therapeutic option. Unfortunately, polymyxin resistance in P. aeruginosa has been increasingly reported. The present study was designed to define metabolic differences between paired polymyxin-susceptible and -resistant P. aeruginosa strains using untargeted metabolomics and lipidomics analyses. The metabolomes of wild-type P. aeruginosa strain K ([PAK] polymyxin B MIC, 1 mg/liter) and its paired pmrB mutant strains, PAKpmrB6 and PAKpmrB12 (polymyxin B MICs of 16 mg/liter and 64 mg/liter, respectively) were characterized using liquid chromatography-mass spectrometry, and metabolic differences were identified through multivariate and univariate statistics. PAKpmrB6 and PAKpmrB12, which displayed lipid A modifications with 4-amino-4-deoxy-l-arabinose, showed significant perturbations in amino acid and carbohydrate metabolism, particularly the intermediate metabolites from 4-amino-4-deoxy-l-arabinose synthesis and the methionine salvage cycle pathways. The genomics result showed a premature termination (Y275stop) in speE (encoding spermidine synthase) in PAKpmrB6, and metabolomics data revealed a decreased intracellular level of spermidine in PAKpmrB6 compared to that in PAKpmrB12. Our results indicate that spermidine may play an important role in high-level polymyxin resistance in P. aeruginosa. Interestingly, both pmrB mutants had decreased levels of phospholipids, fatty acids, and acyl-coenzyme A compared to those in the wild-type PAK. Moreover, the more resistant PAKpmrB12 mutant exhibited much lower levels of phospholipids than the PAKpmrB6 mutant, suggesting that the decreased phospholipid level was associated with polymyxin resistance. In summary, this study provides novel mechanistic information on polymyxin resistance in P. aeruginosa and highlights its impacts on bacterial metabolism.
Antimicrobial Agents and Chemotherapy | 2018
Deanna Deveson Lucas; Bethany Crane; Amy Wright; Mei-Ling Han; Jennifer H. Moffatt; Dieter M. Bulach; Simon Gladman; David R. Powell; Jesús Aranda; Torsten Seemann; Diana Machado; Teresa Pacheco; Teresa P. Marques; Miguel Viveiros; Roger L. Nation; Jian Li; Marina Harper; John D. Boyce
ABSTRACT Colistin is a crucial last-line drug used for the treatment of life-threatening infections caused by multidrug-resistant strains of the Gram-negative bacterium Acinetobacter baumannii. However, colistin-resistant A. baumannii isolates can still be isolated following failed colistin therapy. Resistance is most often mediated by the addition of phosphoethanolamine (pEtN) to lipid A by PmrC, following missense mutations in the pmrCAB operon encoding PmrC and the two-component signal transduction system PmrA/PmrB. We recovered a pair of A. baumannii isolates from a single patient before (6009-1) and after (6009-2) failed colistin treatment. These strains displayed low and very high levels of colistin resistance (MICs, 8 to 16 μg/ml and 128 μg/ml), respectively. To understand how increased colistin resistance arose, we sequenced the genome of each isolate, which revealed that 6009-2 had an extra copy of the insertion sequence element ISAba125 within a gene encoding an H-NS family transcriptional regulator. To confirm the role of H-NS in colistin resistance, we generated an hns deletion mutant in 6009-1 and showed that colistin resistance increased upon the deletion of hns. We also provided 6009-2 with an intact copy of hns and showed that the strain was no longer resistant to high concentrations of colistin. Transcriptomic analysis of the clinical isolates identified more than 150 genes as being differentially expressed in the colistin-resistant hns mutant 6009-2. Importantly, the expression of eptA, encoding a second lipid A-specific pEtN transferase but not pmrC, was increased in the hns mutant. This is the first time an H-NS family transcriptional regulator has been associated with a pEtN transferase and colistin resistance.
ACS Infectious Diseases | 2017
Elena K. Schneider; Johnny X. Huang; Vincenzo Carbone; Mei-Ling Han; Yan Zhu; Sue Nang; Keith K. Khoo; Johnson Mak; Matthew A. Cooper; Jian Li; Tony Velkov
Daptomycin is a lipopeptide antibiotic that is highly bound to plasma proteins. To date, the plasma components and structure-activity relationships responsible for the plasma protein binding profile of daptomycin remain uncharacterized. In the present study we have employed a surface plasmon resonance assay together with molecular docking techniques to investigate the plasma protein binding structure-activity relationships related to the N-terminal fatty acyl of daptomycin. Three compounds were investigated: (1) native daptomycin, which displays an N-terminal n-decanoyl fatty acid side chain, and two analogues with modifications to the N-terminal fatty acyl chain; (2) des-acyl daptomycin; and (3) acetyl-daptomycin. The surface plasmon resonance (SPR) data showed that the binding profile of native daptomycin was in the rank order human serum albumin (HSA) ≫ α-1-antitrypsin > low-density lipoprotein ≥ hemoglobin > sex hormone binding globulin > α-1-acid-glycoprotein (AGP) > hemopexin > fibrinogen > α-2-macroglobulin > β2-microglobulin > high-density lipoprotein > fibronectin > haptoglobulin > transferrin > immunoglobulin G. Notably, binding to fatty acid free HSA was greater than binding to nondelipidated HSA. SPR and ultrafiltration studies also indicated that physiological concentrations of calcium increase binding of daptomycin and acetyl-daptomycin to HSA and AGP. A molecular model of the daptomycin-human serum albumin A complex is presented that illustrates the pivotal role of the N-terminal fatty acyl chain of daptomycin for binding to drug site 1 of HSA. In proof-of-concept, the capacity of physiological cocktails of the identified plasma proteins to inhibit the antibacterial activity of daptomycin was assessed with in vitro microbiological assays. We show that HSA, α-1-antitrypsin, low-density lipoprotein, sex hormone binding globulin, α-1-acid-glycoprotein, and hemopexin are responsible for the majority of the sequestering activity in human plasma. The findings are relevant to medicinal chemistry programs focused on the development of next-generation daptomycin lipopeptides. Tailored modifications to the N-terminal fatty acyl domain of the daptomycin molecule should yield novel daptomycin lipopeptides with more ideal plasma protein binding profiles to increase the levels of active (free) drug in plasma and improved in vivo activity.
ACS Infectious Diseases | 2016
Elena K. Schneider; Mohammad A. K. Azad; Mei-Ling Han; Qi (Tony) Zhou; Jiping Wang; Johnny X. Huang; Matthew A. Cooper; Yohei Doi; Mark A. Baker; Phillip J. Bergen; Mark T. Muller; Jian Li; Tony Velkov
Microbial Drug Resistance | 2017
Maytham Hussein; Elena K. Schneider; Alysha G. Elliott; Mei-Ling Han; Felisa Reyes-Ortega; Faye Morris; Mark A.T. Blastovich; Raad Jasim; Bart J. Currie; Mark Mayo; Mark A. Baker; Matthew A. Cooper; Jian Li; Tony Velkov