Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kaelin M. Cawley is active.

Publication


Featured researches published by Kaelin M. Cawley.


Proceedings of the National Academy of Sciences of the United States of America | 2012

Microbial life at −13 °C in the brine of an ice-sealed Antarctic lake

Alison E. Murray; Fabien Kenig; Christian H. Fritsen; Christopher P. McKay; Kaelin M. Cawley; Ross Edwards; Emanuele Kuhn; Diane M. McKnight; Nathaniel E. Ostrom; Vivian Peng; Adrian Ponce; John C. Priscu; Vladimir A. Samarkin; Ashley T. Townsend; Protima Wagh; Seth A. Young; Pung To Yung; Peter T. Doran

The permanent ice cover of Lake Vida (Antarctica) encapsulates an extreme cryogenic brine ecosystem (−13 °C; salinity, 200). This aphotic ecosystem is anoxic and consists of a slightly acidic (pH 6.2) sodium chloride-dominated brine. Expeditions in 2005 and 2010 were conducted to investigate the biogeochemistry of Lake Vida’s brine system. A phylogenetically diverse and metabolically active Bacteria dominated microbial assemblage was observed in the brine. These bacteria live under very high levels of reduced metals, ammonia, molecular hydrogen (H2), and dissolved organic carbon, as well as high concentrations of oxidized species of nitrogen (i.e., supersaturated nitrous oxide and ∼1 mmol⋅L−1 nitrate) and sulfur (as sulfate). The existence of this system, with active biota, and a suite of reduced as well as oxidized compounds, is unusual given the millennial scale of its isolation from external sources of energy. The geochemistry of the brine suggests that abiotic brine-rock reactions may occur in this system and that the rich sources of dissolved electron acceptors prevent sulfate reduction and methanogenesis from being energetically favorable. The discovery of this ecosystem and the in situ biotic and abiotic processes occurring at low temperature provides a tractable system to study habitability of isolated terrestrial cryoenvironments (e.g., permafrost cryopegs and subglacial ecosystems), and is a potential analog for habitats on other icy worlds where water-rock reactions may cooccur with saline deposits and subsurface oceans.


Wetlands | 2012

Dissolved Organic Matter Biogeochemistry Along a Transect of the Okavango Delta, Botswana

Kaelin M. Cawley; Piotr Wolski; Natalie Mladenov; Rudolf Jaffé

Biogeochemical processing of dissolved organic matter (DOM) in aquatic environments can alter its chemical quality and its bioavailability to the microbial loop. In this study, we evaluated the relative importance to DOM character of allochthonous and autochthonous DOM inputs and photo-degradation in a large, pristine wetland, the Okavango Delta of Botswana. We performed an intensive spatial sampling of surface water and analyzed for chemical and physical parameters (pH, conductivity, dissolved oxygen saturation, temperature, and channel depth), dissolved organic matter (DOM), and particulate organic matter (POM). We used UV–vis absorbance, fluorescence spectroscopy, and parallel factor analysis of excitation emission matrix data (EEM-PARAFAC) to characterize DOM. Our findings from principal component analysis (PCA) show downstream changes in DOM chemistry to be dominated by photo-degradation, suggesting that DOM in the Okavango Delta is transformed photo-chemically in shallower downstream reaches after being mobilized from the permanent swamp and seasonal floodplains. Additionally, we found that the PARAFAC model developed for the Everglades, a large, anthropogenically-altered wetland in North America, was well suited to tracking DOM dynamics in the Okavango Delta and may be useful for characterizing DOM in other sub-tropical, seasonally flooded wetlands.


Marine and Freshwater Research | 2012

Characterising the sources and fate of dissolved organic matter in Shark Bay, Australia: a preliminary study using optical properties and stable carbon isotopes

Kaelin M. Cawley; Yan Ding; James W. Fourqurean; Rudolf Jaffé

Low latitude, seagrass-dominated coastal bays, such as Shark Bay, Australia, are potential sources of chromophoric dissolved organic matter (CDOM) to coastal regions. Dissolved organic matter (DOM) is known to influence aquatic nutrient dynamics, microbial community structure, and depth of light penetration in estuarine systems. Shark Bay is a sub-tropical ecosystem with limited freshwater inputs and restricted tidal flushing. As such, much of the DOMisexpectedtobeseagrass-derived.However,combiningexcitation/emissionfluorescencespectroscopyandparallel factor analysis (EEM-PARFAC) with 13 C stable isotope analysis of DOM, we found evidence for DOM inputs from terrestrial (riverine and possibly groundwater), autochthonous plankton, macroalgae, and seagrass sources. Isotopic analysis of 13 C in DOM supports the idea that seagrass inputs contribute substantially to the DOM pool in Shark Bay, whereas, EEM-PARAFAC data suggests that much of this input is derived from decomposing seagrass detritus and to a lesserextentdue toexudationduringprimary production.Wealsoreport increases inDOMconcentrationsandchangesin DOM characteristics with increasing salinity in surface water samples, indicating that evaporation is an important control on DOM concentration and photo-degradation may play a critical role in transforming DOM within the system.


Biogeochemistry | 2015

In-stream sources and links between particulate and dissolved black carbon following a wildfire

Sasha Wagner; Kaelin M. Cawley; Fernando L. Rosario-Ortiz; Rudolf Jaffé

The occurrence of wildfires is expected to increase with the progression of climate change. These natural burn events can drastically alter the geomorphology and hydrology of affected areas and are one of the primary sources of black carbon (BC) in the environment. BC can be mobilized from soils and charcoal in fire-affected watersheds, potentially impacting downstream water quality. In June of 2012, the High Park Fire burned a large portion of the Cache La Poudre River watershed located in the Colorado Rocky Mountains. Seasonal riverine export of BC in both the dissolved (DBC) and particulate (PBC) phase was compared between burned and unburned sections of the watershed during the year following the High Park Fire. There was little difference in overall DBC concentration between sites, however seasonal changes in DBC quality reflected a shift in hydrology and associated DBC source between peak and base flow conditions. PBC export was substantially larger in fire-affected areas of the watershed during periods of overland flow. Our findings suggest that export processes of BC in the particulate and dissolved phase are decoupled in burned watersheds and that, in addition to DBC, the export of PBC could be a significant contributor to the cycling of charcoal in freshwater ecosystems.


Marine Pollution Bulletin | 2012

Identifying fluorescent pulp mill effluent in the Gulf of Maine and its watershed

Kaelin M. Cawley; Kenna D. Butler; George R. Aiken; Laurel G. Larsen; Thomas G. Huntington; Diane M. McKnight

Using fluorescence spectroscopy and parallel factor analysis (PARAFAC) we characterized and modeled the fluorescence properties of dissolved organic matter (DOM) in samples from the Penobscot River, Androscoggin River, Penobscot Bay, and the Gulf of Maine (GoM). We analyzed excitation-emission matrices (EEMs) using an existing PARAFAC model (Cory and McKnight, 2005) and created a system-specific model with seven components (GoM PARAFAC). The GoM PARAFAC model contained six components similar to those in other PARAFAC models and one unique component with a spectrum similar to a residual found using the Cory and McKnight (2005) model. The unique component was abundant in samples from the Androscoggin River immediately downstream of a pulp mill effluent release site. The detection of a PARAFAC component associated with an anthropogenic source of DOM, such as pulp mill effluent, demonstrates the importance for rigorously analyzing PARAFAC residuals and developing system-specific models.


Frontiers in chemistry | 2015

Associations Between the Molecular and Optical Properties of Dissolved Organic Matter in the Florida Everglades, a Model Coastal Wetland System

Sasha Wagner; Rudolf Jaffé; Kaelin M. Cawley; Thorsten Dittmar; Aron Stubbins

Optical properties are easy-to-measure proxies for dissolved organic matter (DOM) composition, source, and reactivity. However, the molecular signature of DOM associated with such optical parameters remains poorly defined. The Florida coastal Everglades is a subtropical wetland with diverse vegetation (e.g., sawgrass prairies, mangrove forests, seagrass meadows) and DOM sources (e.g., terrestrial, microbial, and marine). As such, the Everglades is an excellent model system from which to draw samples of diverse origin and composition to allow classically-defined optical properties to be linked to molecular properties of the DOM pool. We characterized a suite of seasonally- and spatially-collected DOM samples using optical measurements (EEM-PARAFAC, SUVA254, S275−295, S350−400, SR, FI, freshness index, and HIX) and ultrahigh resolution mass spectrometry (FTICR-MS). Spearmans rank correlations between FTICR-MS signal intensities of individual molecular formulae and optical properties determined which molecular formulae were associated with each PARAFAC component and optical index. The molecular families that tracked with the optical indices were generally in agreement with conventional biogeochemical interpretations. Therefore, although they represent only a small portion of the bulk DOM pool, absorbance, and fluorescence measurements appear to be appropriate proxies for the aquatic cycling of both optically-active and associated optically-inactive DOM in coastal wetlands.


Photochemistry and Photobiology | 2015

Utilization of PARAFAC‐Modeled Excitation‐Emission Matrix (EEM) Fluorescence Spectroscopy to Identify Biogeochemical Processing of Dissolved Organic Matter in a Northern Peatland

Malak M. Tfaily; Jane E. Corbett; Rachel M. Wilson; Jeffrey P. Chanton; Paul H. Glaser; Kaelin M. Cawley; Rudolf Jaffé; William T. Cooper

In this study, we contrast the fluorescent properties of dissolved organic matter (DOM) in fens and bogs in a Northern Minnesota peatland using excitation emission matrix fluorescence spectroscopy with parallel factor analysis (EEM‐PARAFAC). EEM‐PARAFAC identified four humic‐like components and one protein‐like component and the dynamics of each were evaluated based on their distribution with depth as well as across sites differing in hydrology and major biological species. The PARAFAC‐EEM experiments were supported by dissolved organic carbon measurements (DOC), optical spectroscopy (UV‐Vis), and compositional characterization by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectroscopy (FT‐ICR MS). The FT‐ICR MS data indicate that metabolism in peatlands reduces the molecular weights of individual components of DOM, and oxygen‐rich less aromatic molecules are selectively biodegraded. Our data suggest that different hydrologic and biological conditions within the larger peat ecosystem drive molecular changes in DOM, resulting in distinctly different chemical compositions and unique fluorescent fingerprints. PARAFAC modeling of EEM data coupled with ultrahigh resolution FT‐ICR MS has the potential to provide significant molecular‐based information on DOM composition that will support efforts to better understand the composition, sources, and diagenetic status of DOM from different terrestrial and aquatic systems.


Environmental Research Letters | 2013

Characterization of fulvic acid fractions of dissolved organic matter during ice-out in a hyper-eutrophic, coastal pond in Antarctica

Kaelin M. Cawley; Diane M. McKnight; Penney L. Miller; Rose M. Cory; Ryan L. Fimmen; Jennifer J. Guerard; Markus Dieser; Christopher Jaros; Yu Ping Chin; Christine M. Foreman

Dissolved humic material (HDOM) is ubiquitous to all natural waters and its source material influences its chemical structure, reactivity, and bioavailability. While terrestrially derived HDOM reference materials distributed by the International Humic Substances Society (IHSS) have been readily available to engineering and scientific communities, a microbially derived reference HDOM was not, despite the well-characterized differences in the chemistry and reactivity of HDOM derived from terrestrial versus microbial sources. To address this gap, we collected a microbial reference fulvic acid from Pony Lake (PLFA) for distribution through the IHSS. Pony Lake is a saline coastal pond on Ross Island, Antarctica, where the landscape is devoid of terrestrial plants. Sample collection occurred over a 17-day period in the summer season at Pony Lake. During this time, the dissolved organic carbon (DOC) concentrations increased nearly two-fold, and the fulvic acid fraction (collected using the XAD-8 method) accounted for 14.6% of the DOC. During the re-concentration and desalting procedures we isolated two other chemically distinct fulvic acid fractions: (1) PLFA-2, which was high in carbohydrates and (2) PLFA-CER, which was high in nitrogen. The chemical characteristics (elemental analysis, optical characterization with UV‐vis and fluorescence spectroscopy, and 13 C NMR spectroscopy) of the three fulvic acid fractions helped to explain their behavior during isolation.


Aquatic Sciences | 2014

Evaluation of Forest Disturbance Legacy Effects on Dissolved Organic Matter Characteristics in Streams at the Hubbard Brook Experimental Forest, New Hampshire

Kaelin M. Cawley; John L. Campbell; Melissa Zwilling; Rudolf Jaffé

Dissolved organic matter (DOM) source and composition are critical drivers of its reactivity, impact microbial food webs and influence ecosystem functions. It is believed that DOM composition and abundance represent an integrated signal derived from the surrounding watershed. Recent studies have shown that land-use may have a long-term effect on DOM composition. Methods for characterizing DOM, such as those that measure the optical properties and size of the molecules, are increasingly recognized as valuable tools for assessing DOM sources, cycling, and reactivity. In this study we measured DOM optical properties and molecular weight determinations to evaluate whether the legacy of forest disturbance alters the amount and composition of stream DOM. Differences in DOM quantity and composition due to vegetation type and to a greater extent, wetland influence, were more pronounced than effects due to disturbance. Our results suggest that excitation-emission matrix fluorescence with parallel factor analysis is a more sensitive metric of disturbance than the other methods evaluated. Analyses showed that streams draining watersheds that have been clearcut had lower dissolved organic carbon (DOC) concentrations and higher microbially-derived and protein-like fluorescence features compared to reference streams. DOM optical properties in a watershed amended with calcium, were not significantly different than reference watersheds, but had higher concentrations of DOC. Collectively these results improve our understanding of how the legacy of forest disturbances and natural landscape characteristics affect the quantity and chemical composition of DOM in headwater streams, having implications for stream water quality and carbon cycling.


Environmental Science & Technology | 2017

Molecular and Spectroscopic Characterization of Water Extractable Organic Matter from Thermally Altered Soils Reveal Insight into Disinfection Byproduct Precursors

Kaelin M. Cawley; Amanda K. Hohner; David C. Podgorski; William T. Cooper; Julie A. Korak; Fernando L. Rosario-Ortiz

To characterize the effects of thermal-alteration on water extractable organic matter (WEOM), soil samples were heated in a laboratory at 225, 350, and 500 °C. Next, heated and unheated soils were leached, filtered, and analyzed for dissolved organic carbon (DOC) concentration, optical properties, molecular size distribution, molecular composition, and disinfection byproduct (DBP) formation following the addition of chlorine. The soils heated to 225 °C leached the greatest DOC and had the highest C- and N-DBP precursor reactivity per unit carbon compared to the unheated material or soils heated to 350 or 500 °C. The molecular weight of the soluble compounds decreased with increasing heating temperature. Compared to the unheated soil leachates, all DBP yields were higher for the leachates of soils heated to 225 °C. However, only haloacetonitrile yields (μg/mgC) were higher for leachates of the soils heated to 350 °C, whereas trihalomethane, haloacetic acid and chloropicrin yields were lower compared to unheated soil leachates. Soluble N-containing compounds comprised a high number of molecular formulas for leachates of heated soils, which may explain the higher yield of haloacetonitriles for heated soil leachates. Overall, heating soils altered the quantity, quality, and reactivity of the WEOM pool. These results may be useful for inferring how thermal alteration of soil by wildfire can affect water quality.

Collaboration


Dive into the Kaelin M. Cawley's collaboration.

Top Co-Authors

Avatar

Rudolf Jaffé

Florida International University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amanda K. Hohner

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

Diane M. McKnight

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fabien Kenig

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar

Natalie Mladenov

San Diego State University

View shared research outputs
Top Co-Authors

Avatar

Peter T. Doran

University of Illinois at Chicago

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aron Stubbins

Skidaway Institute of Oceanography

View shared research outputs
Researchain Logo
Decentralizing Knowledge