Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kai-Chee Loh is active.

Publication


Featured researches published by Kai-Chee Loh.


Journal of Applied Polymer Science | 2000

Activated carbon‐filled cellulose acetate hollow‐fiber membrane for cell immobilization and phenol degradation

Guanhua Zhu; Tai-Shung Chung; Kai-Chee Loh

The activated carbon-filled cellulose acetate (CA) hollow-fiber membranes were prepared by using phase-inverse technique and subsequently characterized by scanning electronic microscopy (SEM), atomic force microscopy (AFM), dynamic mechanical analysis (DMA), thermal mechanical analysis (TMA), and tensile analysis. The SEM observation demonstrated that the activated carbon-filled CA hollow-fiber membranes possess four-layer structure, which consists of an external skin dense layer, an external void layer, a central sponge layer, and an internal skin dense layer, whereas the pure CA hollow-fiber membranes lack the macrovoid layer. As the measurement of AFM, the roughness of both internal and external surface of activated carbon-filled fibers is much higher than that of pure CA fiber, respectively. Higher Youngs modulus and storage modulus of filled membranes indicate that the activated carbon particles were homogeneously dispersed in the polymeric matrix. To investigate the feasibility of the newly developed hollow-fiber membranes for cell immobilization cells and to evaluate the inhibitory effect of phenol on immobilized cells, Pseudomonas putida ATCC 17484 was chosen to be immobilized on both pure CA and activated carbon-filled hollow-fiber membranes. Batch experiments for phenol biodegradation were carried out for both free suspension and immobilized cells at the initial concentration of 1500 mg/L phenol. In the case of free suspension, neither cell growth nor phenol degradation occurred to any measurable extent up to 35 h. We found that both pure CA fiber and activated carbon-filled fiber immobilization systems can completely degrade the phenol. However, the biodegradation rate of activated carbon-filled fiber system was higher than that of pure CA fiber system.


Journal of Applied Polymer Science | 1998

Development of Cellulose Acetate Membranes for Bacteria Immobilization to Remove Phenol

Tai-Shung Chung; Kai-Chee Loh; Sock Khiang Goh

The objective of this study is to investigate the feasibility of developing cellulose acetate (CA) membranes to partially immobilize Pseudomonas putida (ATCC 49451) and to evaluate the inhibitory effect of phenol on the immobilized bacteria by monitoring their growth in partially immobilized and free-suspension systems. The cellulose acetate membranes used in this study were wet spun from 20 wt % of CA in 1-methyl-2-pyrrolidone (NMP)/acetone (30 : 70) solvent using water as the bore fluid as well as the external coagulant. Scanning-electron microscopy (SEM) characterization of the newly developed CA hollow fibers suggests that the fiber cross section consists of multilayer microporous structures useful for cell immobilization. Experiments were conducted using the bacteria to degrade phenol at initial phenol concentrations of 300 mg/L and 1000 mg/L. In a free suspension (no membrane) system, it was observed that the bacteria were able to grow optimally at 300 mg/L of phenol, and degraded phenol almost completely in about 26 h. However, neither cell growth nor phenol degra- dation occurred when initial concentration of phenol was increased to 1000 mg/L. In a cell-immobilized membrane system, the cell growth and phenol concentration profiles in the medium were very similar to those obtained in a free suspension culture if phenol concentration was 300 mg/L. However, when the initial phenol concentration was increased to 1000 mg/L, data obtained in a cell-immobilized membrane system were discernibly different from that obtained in the suspension culture. In the former case, phenol concentration decreased in the beginning of test, indicating that the carbon source has been consumed and immobilized cells within the membrane had begun to multiply. As soon as the phenol concentration decreased to about 700 mg/L (at which concentration, substrate inhibition was not as severe as 1000 mg/L),partial immobili- zation occurred when some cells diffused out of the membrane into the medium and optical density became measurable in the medium. It was found that cell growth contin- ued for the next 32 h, reaching an optical density in the medium of 0.42 absorbance units and a significant amount of phenol was degraded. q 1998 John Wiley & Sons, Inc.


Bioresource Technology | 2016

Nitrogen and phosphorus removal from tertiary wastewater in an osmotic membrane photobioreactor

Prashant Praveen; Kai-Chee Loh

An osmotic membrane photobioreactor (OMPBR) was designed and operated for 162days for nitrogen and phosphorus removal from wastewater using Chlorella vulgaris. The removal efficiency for NH4(+)-N, NO3(-)-N and PO4(3-)-P reached as high as 95%, 53% and 89%, whereas the maximum removal rates were 3.41 mg/L-day, 0.20 mg/L-day and 0.8 mg/L-day, respectively. The microalgae exhibited high tendency to aggregate and attached to the bioreactor and membrane surfaces, and total biomass accumulation in the OMPBR was over 5 g/L. Salt accumulation and biofouling had adverse effects on membrane filtration, but the performance could be recovered through periodic backwashing of the membranes. Extracellular polymeric substances characterization indicated higher fraction of polysaccharides as compared to proteins. The biomass in the OMPBR accumulated higher levels of carbohydrates and chlorophyll. These results indicate the suitability of OMPBR in wastewater treatment and in high-density microalgae cultivation.


Scientific Reports | 2017

Three-stage anaerobic co-digestion of food waste and horse manure

Jingxin Zhang; Kai-Chee Loh; Jonathan Lee; Chi-Hwa Wang; Yanjun Dai; Yen Wah Tong

A novel compact three-stage anaerobic digester (HM3) was developed to combine the advantages of high solids anaerobic digestion (AD) and wet AD for co-digestion of food waste and horse manure. By having three separate chambers in the three-stage anaerobic digester, three different functional zones were created for high-solids hydrolysis, acidogenesis and wet methanogenesis. The results showed that the functionalized partitioning in HM3 significantly accelerated the solubilization of solid organic matters and the formation of volatile fatty acids, resulting in an increase of 11~23% in methane yield. VS reduction in the HM3 presents the highest rate of 71% compared to the controls. Pyrosequencing analysis indicated that different microbial communities in terms of hydrolyzing bacteria, acidogenic bacteria and methanogenic archaea were selectively enriched in the three separate chambers of the HM3. Moreover, the abundance of the methanogenic archaea was increased by 0.8~1.28 times compared to controls.


Journal of Hazardous Materials | 2016

Osmotic membrane bioreactor for phenol biodegradation under continuous operation

Prashant Praveen; Kai-Chee Loh

Continuous phenol biodegradation was accomplished in a two-phase partitioning osmotic membrane bioreactor (TPPOMBR) system, using extractant impregnated membranes (EIM) as the partitioning phase. The EIMs alleviated substrate inhibition during prolonged operation at influent phenol concentrations of 600-2000mg/L, and also at spiked concentrations of 2500mg/L phenol restricted to 2 days. Filtration of the effluent through forward osmosis maintained high biomass concentration in the bioreactor and improved effluent quality. Steady state was reached in 5-6 days at removal rates varying between 2000 and 5500mg/L-day under various conditions. Due to biofouling and salt accumulation, the permeate flux varied from 1.2-7.2 LMH during 54 days of operation, while maintaining an average hydraulic retention time of 7.4h. A washing cycle, comprising 1h osmotic backwashing using 0.5M NaCl and 2h washing with water, facilitated biofilm removal from the membranes. Characterization of the extracellular polymeric substances (EPS) through FTIR showed peaks between 1700 and 1500cm(-1), 1450-1450cm(-1) and 1200-1000cm(-1), indicating the presence of proteins, phenols and polysaccharides, respectively. The carbohydrate to protein ratio in the EPS was estimated to be 0.3. These results indicate that TPPOMBR can be promising in continuous treatment of phenolic wastewater.


Bioresource Technology | 2016

Tertiary wastewater treatment in membrane photobioreactor using microalgae: Comparison of forward osmosis & microfiltration

Prashant Praveen; Jonathan Yun Ping Heng; Kai-Chee Loh

Discharge of wastewater with high nitrogen and phosphorus content is a major cause of eutrophication. In this study, a microfiltration-based membrane photobioreactor (MPBR) and forward osmosis-based osmotic membrane photobioreactor (OMPBR) have been operated with Chlorella vulgaris for continuous tertiary wastewater treatment. Both the bioreactors exhibited good biomass accumulation (over 2g/L), although the OMPBR achieved better nutrients removal due to high rejection properties of the membranes. At 2days HRT, the OMPBR achieved nitrogen and phosphorus removal efficiencies of 86-99% and 100%, respectively, whereas the corresponding values in the MPBR were 48-97% and 46%, respectively. Based on the energy input, the total operating costs for OMPBR were 32-45% higher than that of the MPBR, and filtration cost for OMPBR was 3.5-4.5 folds higher than that of the MPBR. These results indicate that the integration of membrane filtration with photobioreactors is promising in microalgae-based tertiary wastewater treatment.


Chemosphere | 2016

Solid/liquid extraction equilibria of phenolic compounds with trioctylphosphine oxide impregnated in polymeric membranes.

Prashant Praveen; Kai-Chee Loh

Trioctylphosphine oxide based extractant impregnated membranes (EIM) were used for extraction of phenol and its methyl, hydroxyl and chloride substituted derivatives. The distribution coefficients of the phenols varied from 2 to 234, in the order of 1-napthol > p-chlorophenol > m-cresol > p-cresol > o-cresol > phenol > catechol > pyrogallol > hydroquinone, when initial phenols loadings was varied in 100-2000 mg/L. An extraction model, based on the law of mass action, was formulated to predict the equilibrium distribution of the phenols. The model was in excellent agreement (R(2) > 0.97) with the experimental results at low phenols concentrations (<800 mg/L). At higher phenols loadings though, Langmuir isotherm was better suited for equilibrium prediction (R(2) > 0.95), which signified high mass transfer resistance in the EIMs. Examination of the effects of ring substitution on equilibrium, and bivariate statistical analysis between the amounts of phenols extracted into the EIMs and factors affecting phenols interaction with TOPO, indicated the dominant role of hydrophobicity in equilibrium determination. These results improve understanding of the solid/liquid equilibrium process between phenols and the EIMs, and these will be useful in designing phenol recovery process from wastewater.


Waste Management | 2018

Activated carbon enhanced anaerobic digestion of food waste – Laboratory-scale and Pilot-scale operation

Le Zhang; Jingxin Zhang; Kai-Chee Loh

Effects of activated carbon (AC) supplementation on anaerobic digestion (AD) of food waste were elucidated in lab- and pilot-scales. Lab-scale AD was performed in 1 L and 8 L digesters, while pilot-scale AD was conducted in a 1000 L digester. Based on the optimal dose of 15 g AC per working volume derived from the 1 L digester, for the same AC dosage in the 8 L digester, an improved operation stability coupled with a higher methane yield was achieved even when digesters without AC supplementation failed after 59 days due to accumulation of substantial organic intermediates. At the same time, color removal from the liquid phase of the digestate was dramatically enhanced and the particle size of the digestate solids was increased by 53% through AC supplementation after running for 59 days. Pyrosequencing of 16S rRNA gene showed the abundance of predominant phyla Firmicutes, Elusimicrobia and Proteobacteria selectively enhanced by 1.7-fold, 2.9-fold and 2.1-fold, respectively. Pilot-scale digester without AC gave an average methane yield of 0.466 L⋅(gVS)-1⋅d-1 at a composition of 53-61% v/v methane. With AC augmentation, an increase of 41% in methane yield was achieved in the 1000 L digester under optimal organic loading rate (1.6 g VSFW·L-1·d-1).


Journal of Hazardous Materials | 2016

Thermodynamic analysis of Cr(VI) extraction using TOPO impregnated membranes.

Prashant Praveen; Kai-Chee Loh

Solid/liquid extraction of Cr(VI) was accomplished using trioctylphosphine oxide impregnated polypropylene hollow fiber membranes. Extraction of 100-500mg/L Cr(VI) by the extractant impregnated membranes (EIM) was characterized by high uptake rate and capacity, and equilibrium was attained within 45min of contact. Extraction equilibrium was pH-dependent (at an optimal pH 2), whereas stripping using 0.2M sodium hydroxide yielded the highest recovery of 98% within 60min. The distribution coefficient was independent of initial Cr(VI) concentration, and the linear distribution equilibrium isotherm could be modeled using Freundlich isotherm. The mass transfer kinetics of Cr(VI) was examined using pseudo-second-order and intraparticle diffusion models and a mass transfer mechanism was deduced. The distribution coefficient increased with temperature, which indicated endothermic nature of the reaction. Enthalpy and entropy change during Cr(VI) extraction were positive and varied in the range of 37-49kJ/mol and 114-155J/mol, respectively. The free energy change was negative, confirming the feasibility and spontaneity of the mass transfer process. Results obtained suggest that EIMs are efficient and sustainable for extraction of Cr(VI) from wastewater.


Bioresource Technology | 2018

Evaluating the effects of activated carbon on methane generation and the fate of antibiotic resistant genes and class I integrons during anaerobic digestion of solid organic wastes

Jingxin Zhang; Feijian Mao; Kai-Chee Loh; Karina Yew-Hoong Gin; Yanjun Dai; Yen Wah Tong

The effects of activated carbon (AC) on methane production and the fate of antibiotic resistance genes (ARGs) were evaluated through comparing the anaerobic digestion performance and transformation of ARGs among anaerobic mono-digestion of food waste, co-digestion of food waste and chicken manure, and co-digestion of food waste and waste activated sludge. Results showed that adding AC in anaerobic digesters improved methane yield by at least double through the enrichment of bacteria and archaea. Conventional digestion process showed ability in removing certain types of ARGs, such as tetA, tetX, sul1, sul2, cmlA, floR, and intl1. Supplementing AC in anaerobic digester enhanced the removal of most of the ARGs in mono-digestion of food waste. The effects tended to be minimal in co-digestion of co-substrates such as chicken manure and waste activated sludge, both of which contain a certain amount of antibiotics.

Collaboration


Dive into the Kai-Chee Loh's collaboration.

Top Co-Authors

Avatar

Prashant Praveen

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Jingxin Zhang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Yen Wah Tong

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Yanjun Dai

Shanghai Jiao Tong University

View shared research outputs
Top Co-Authors

Avatar

Le Zhang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Tai-Shung Chung

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Wangliang Li

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Chi-Hwa Wang

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Duong Thi Thuy Nguyen

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Jonathan Lee

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge