Kai Karma
Sibelius Academy
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kai Karma.
PLOS ONE | 2009
Liisa T. Ukkola; Päivi Onkamo; Pirre Raijas; Kai Karma; Irma Järvelä
Artistic creativity forms the basis of music culture and music industry. Composing, improvising and arranging music are complex creative functions of the human brain, which biological value remains unknown. We hypothesized that practicing music is social communication that needs musical aptitude and even creativity in music. In order to understand the neurobiological basis of music in human evolution and communication we analyzed polymorphisms of the arginine vasopressin receptor 1A (AVPR1A), serotonin transporter (SLC6A4), catecol-O-methyltranferase (COMT), dopamin receptor D2 (DRD2) and tyrosine hydroxylase 1 (TPH1), genes associated with social bonding and cognitive functions in 19 Finnish families (n = 343 members) with professional musicians and/or active amateurs. All family members were tested for musical aptitude using the auditory structuring ability test (Karma Music test; KMT) and Carl Seashores tests for pitch (SP) and for time (ST). Data on creativity in music (composing, improvising and/or arranging music) was surveyed using a web-based questionnaire. Here we show for the first time that creative functions in music have a strong genetic component (h2 = .84; composing h2 = .40; arranging h2 = .46; improvising h2 = .62) in Finnish multigenerational families. We also show that high music test scores are significantly associated with creative functions in music (p<.0001). We discovered an overall haplotype association with AVPR1A gene (markers RS1 and RS3) and KMT (p = 0.0008; corrected p = 0.00002), SP (p = 0.0261; corrected p = 0.0072) and combined music test scores (COMB) (p = 0.0056; corrected p = 0.0006). AVPR1A haplotype AVR+RS1 further suggested a positive association with ST (p = 0.0038; corrected p = 0.00184) and COMB (p = 0.0083; corrected p = 0.0040) using haplotype-based association test HBAT. The results suggest that the neurobiology of music perception and production is likely to be related to the pathways affecting intrinsic attachment behavior.
PLOS ONE | 2013
Liisa Ukkola-Vuoti; Charkravarthi Kanduri; Jaana Oikkonen; Gemma Buck; Christine Blancher; Pirre Raijas; Kai Karma; Harri Lähdesmäki; Irma Järvelä
Music perception and practice represent complex cognitive functions of the human brain. Recently, evidence for the molecular genetic background of music related phenotypes has been obtained. In order to further elucidate the molecular background of musical phenotypes we analyzed genome wide copy number variations (CNVs) in five extended pedigrees and in 172 unrelated subjects characterized for musical aptitude and creative functions in music. Musical aptitude was defined by combination of the scores of three music tests (COMB scores): auditory structuring ability, Seashores test for pitch and for time. Data on creativity in music (herein composing, improvising and/or arranging music) was surveyed using a web-based questionnaire. Several CNVRs containing genes that affect neurodevelopment, learning and memory were detected. A deletion at 5q31.1 covering the protocadherin-α gene cluster (Pcdha 1-9) was found co-segregating with low music test scores (COMB) in both sample sets. Pcdha is involved in neural migration, differentiation and synaptogenesis. Creativity in music was found to co-segregate with a duplication covering glucose mutarotase gene (GALM) at 2p22. GALM has influence on serotonin release and membrane trafficking of the human serotonin transporter. Interestingly, genes related to serotonergic systems have been shown to associate not only with psychiatric disorders but also with creativity and music perception. Both, Pcdha and GALM, are related to the serotonergic systems influencing cognitive and motor functions, important for music perception and practice. Finally, a 1.3 Mb duplication was identified in a subject with low COMB scores in the region previously linked with absolute pitch (AP) at 8q24. No differences in the CNV burden was detected among the high/low music test scores or creative/non-creative groups. In summary, CNVs and genes found in this study are related to cognitive functions. Our result suggests new candidate genes for music perception related traits and supports the previous results from AP study.
Journal of Medical Genetics | 2008
Kristiina Pulli; Kai Karma; Reijo Norio; Pertti Sistonen; Harald H H Göring; Irma Järvelä
Background: Music perception and performance are comprehensive human cognitive functions and thus provide an excellent model system for studying human behaviour and brain function. However, the molecules involved in mediating music perception and performance are so far uncharacterised. Objective: To unravel the biological background of music perception, using molecular and statistical genetic approaches. Methods: 15 Finnish multigenerational families (with a total of 234 family members) were recruited via a nationwide search. The phenotype of all family members was determined using three tests used in defining musical aptitude: a test for auditory structuring ability (Karma Music test; KMT) commonly used in Finland, and the Seashore pitch and time discrimination subtests (SP and ST respectively) used internationally. We calculated heritabilities and performed a genome-wide variance components-based linkage scan using genotype data for 1113 microsatellite markers. Results: The heritability estimates were 42% for KMT, 57% for SP, 21% for ST and 48% for the combined music test scores. Significant evidence of linkage was obtained on chromosome 4q22 (LOD 3.33) and suggestive evidence of linkage at 8q13-21 (LOD 2.29) with the combined music test scores, using variance component linkage analyses. The major contribution of the 4q22 locus was obtained for the KMT (LOD 2.91). Interestingly, a positive LOD score of 1.69 was shown at 18q, a region previously linked to dyslexia (DYX6) using combined music test scores. Conclusion: Our results show that there is a genetic contribution to musical aptitude that is likely to be regulated by several predisposing genes or variants.
Molecular Psychiatry | 2015
Jaana Oikkonen; Y Huang; Päivi Onkamo; Liisa Ukkola-Vuoti; Pirre Raijas; Kai Karma; V J Vieland; Irma Järvelä
Humans have developed the perception, production and processing of sounds into the art of music. A genetic contribution to these skills of musical aptitude has long been suggested. We performed a genome-wide scan in 76 pedigrees (767 individuals) characterized for the ability to discriminate pitch (SP), duration (ST) and sound patterns (KMT), which are primary capacities for music perception. Using the Bayesian linkage and association approach implemented in program package KELVIN, especially designed for complex pedigrees, several single nucleotide polymorphisms (SNPs) near genes affecting the functions of the auditory pathway and neurocognitive processes were identified. The strongest association was found at 3q21.3 (rs9854612) with combined SP, ST and KMT test scores (COMB). This region is located a few dozen kilobases upstream of the GATA binding protein 2 (GATA2) gene. GATA2 regulates the development of cochlear hair cells and the inferior colliculus (IC), which are important in tonotopic mapping. The highest probability of linkage was obtained for phenotype SP at 4p14, located next to the region harboring the protocadherin 7 gene, PCDH7. Two SNPs rs13146789 and rs13109270 of PCDH7 showed strong association. PCDH7 has been suggested to play a role in cochlear and amygdaloid complexes. Functional class analysis showed that inner ear and schizophrenia-related genes were enriched inside the linked regions. This study is the first to show the importance of auditory pathway genes in musical aptitude.
Journal of Human Genetics | 2011
Liisa Ukkola-Vuoti; Jaana Oikkonen; Päivi Onkamo; Kai Karma; Pirre Raijas; Irma Järvelä
Music is listened in all cultures. We hypothesize that willingness to produce and perceive sound and music is social communication that needs musical aptitude. Here, listening to music was surveyed using a web-based questionnaire and musical aptitude using the auditory structuring ability test (Karma Music test) and Carl Seashores tests for pitch and for time. Three highly polymorphic microsatellite markers (RS3, RS1 and AVR) of the arginine vasopressin receptor 1A (AVPR1A) gene, previously associated with social communication and attachment, were genotyped and analyzed in 31 Finnish families (n=437 members) using family-based association analysis. A positive association between the AVPR1A haplotype (RS1 and AVR) and active current listening to music (permuted P=0.0019) was observed. Other AVPR1A haplotype (RS3 and AVR) showed association with lifelong active listening to music (permuted P=0.0022). In addition to AVPR1A, two polymorphisms (5-HTTLPR and variable number of tandem repeat) of human serotonin transporter gene (SLC6A4), a candidate gene for many neuropsychiatric disorders and previously associated with emotional processing, were analyzed. No association between listening to music and the polymorphisms of SLC6A4 were detected. The results suggest that willingness to listen to music is related to neurobiological pathways affecting social affiliation and communication.
European Journal of Human Genetics | 2013
Chakravarthi Kanduri; Liisa Ukkola-Vuoti; Jaana Oikkonen; Gemma Buck; Christine Blancher; Pirre Raijas; Kai Karma; Harri Lähdesmäki; Irma Järvelä
Here we characterized the genome-wide architecture of copy number variations (CNVs) in 286 healthy, unrelated Finnish individuals belonging to the MUSGEN study, where molecular background underlying musical aptitude and related traits are studied. By using Illumina HumanOmniExpress-12v.1.0 beadchip, we identified 5493 CNVs that were spread across 467 different cytogenetic regions, spanning a total size of 287.83 Mb (∼9.6% of the human genome). Merging the overlapping CNVs across samples resulted in 999 discrete copy number variable regions (CNVRs), of which ∼6.9% were putatively novel. The average number of CNVs per person was 20, whereas the average size of CNV per locus was 52.39 kb. Large CNVs (>1 Mb) were present in 4% of the samples. The proportion of homozygous deletions in this data set (∼12.4%) seemed to be higher when compared with three other populations. Interestingly, several CNVRs were significantly enriched in this sample set, whereas several others were totally depleted. For example, a CNVR at chr2p22.1 intersecting GALM was more common in this population (P=3.3706 × 10−44) than in African and other European populations. The enriched CNVRs, however, showed no significant association with music-related phenotypes. Moreover, the most common CNV locations in world’s normal population cohorts (6q14.1, 11q11) were overrepresented in this population. Thus, the genome-wide CNV investigation in this Finnish sample set demonstrated features that are characteristic to isolated populations. Novel CNVRs and the functional implications of CNVs revealed in this study elucidate structural variation present in this population isolate, and may also serve as candidate gene loci for music-related traits.
International Journal of Music Education | 1984
Kai Karma
The author is acting Professor of Music Education, the Sibelius Academy, Helsinki, Finland. In the beginning of this century scientific psychology was still new and fighting for a respected status among the established sciences. Even more than today it lacked a generally accepted paradigm which could have formed the frame of reference for theories and empirical study. One central line of thought saw the tradition of the natural sciences as an ideal which should be approached as much as possible. Among other things, this means that elementary phenomena should be isolated and studied in well-controlled experimental situations. For instance, already before the turn of the century numerous studies on the memory were carried out with word lists and the like. The basic principles of proactive and retroactive inhibition, retention
Scientific Reports | 2016
Xuanyao Liu; Charkravarthi Kanduri; Jaana Oikkonen; Kai Karma; Pirre Raijas; Liisa Ukkola-Vuoti; Yik-Ying Teo; Irma Järvelä
Abilities related to musical aptitude appear to have a long history in human evolution. To elucidate the molecular and evolutionary background of musical aptitude, we compared genome-wide genotyping data (641 K SNPs) of 148 Finnish individuals characterized for musical aptitude. We assigned signatures of positive selection in a case-control setting using three selection methods: haploPS, XP-EHH and FST. Gene ontology classification revealed that the positive selection regions contained genes affecting inner-ear development. Additionally, literature survey has shown that several of the identified genes were known to be involved in auditory perception (e.g. GPR98, USH2A), cognition and memory (e.g. GRIN2B, IL1A, IL1B, RAPGEF5), reward mechanisms (RGS9), and song perception and production of songbirds (e.g. FOXP1, RGS9, GPR98, GRIN2B). Interestingly, genes related to inner-ear development and cognition were also detected in a previous genome-wide association study of musical aptitude. However, the candidate genes detected in this study were not reported earlier in studies of musical abilities. Identification of genes related to language development (FOXP1 and VLDLR) support the popular hypothesis that music and language share a common genetic and evolutionary background. The findings are consistent with the evolutionary conservation of genes related to auditory processes in other species and provide first empirical evidence for signatures of positive selection for abilities that contribute to musical aptitude.
Acta Paediatrica | 2011
Minna Huotilainen; Riikka Lovio; Teija Kujala; Viena Tommiska; Kai Karma; Vineta Fellman
Aim: To study whether a dyslexia remediation programme, Audilex, improves cognition in extremely low birth (ELBW) children.
PLOS ONE | 2016
Jaana Oikkonen; Tuire Kuusi; Petri Peltonen; Pirre Raijas; Liisa Ukkola-Vuoti; Kai Karma; Päivi Onkamo; Irma Järvelä
Creative activities in music represent a complex cognitive function of the human brain, whose biological basis is largely unknown. In order to elucidate the biological background of creative activities in music we performed genome-wide linkage and linkage disequilibrium (LD) scans in musically experienced individuals characterised for self-reported composing, arranging and non-music related creativity. The participants consisted of 474 individuals from 79 families, and 103 sporadic individuals. We found promising evidence for linkage at 16p12.1-q12.1 for arranging (LOD 2.75, 120 cases), 4q22.1 for composing (LOD 2.15, 103 cases) and Xp11.23 for non-music related creativity (LOD 2.50, 259 cases). Surprisingly, statistically significant evidence for linkage was found for the opposite phenotype of creative activity in music (neither composing nor arranging; NCNA) at 18q21 (LOD 3.09, 149 cases), which contains cadherin genes like CDH7 and CDH19. The locus at 4q22.1 overlaps the previously identified region of musical aptitude, music perception and performance giving further support for this region as a candidate region for broad range of music-related traits. The other regions at 18q21 and 16p12.1-q12.1 are also adjacent to the previously identified loci with musical aptitude. Pathway analysis of the genes suggestively associated with composing suggested an overrepresentation of the cerebellar long-term depression pathway (LTD), which is a cellular model for synaptic plasticity. The LTD also includes cadherins and AMPA receptors, whose component GSG1L was linked to arranging. These results suggest that molecular pathways linked to memory and learning via LTD affect music-related creative behaviour. Musical creativity is a complex phenotype where a common background with musicality and intelligence has been proposed. Here, we implicate genetic regions affecting music-related creative behaviour, which also include genes with neuropsychiatric associations. We also propose a common genetic background for music-related creative behaviour and musical abilities at chromosome 4.