Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kai M. Udert is active.

Publication


Featured researches published by Kai M. Udert.


Water Research | 2003

Urea hydrolysis and precipitation dynamics in a urine-collecting system.

Kai M. Udert; Tove A. Larsen; Martin Biebow; Willi Gujer

Blockages caused by inorganic precipitates are a major problem of urine-collecting systems. The trigger of precipitation is the hydrolysis of urea by bacterial urease. While the maximum amount of precipitates, i.e. the precipitation potential, can be estimated with equilibrium calculations, little is known about the dynamics of ureolysis and precipitation. To gain insight in these processes, we performed batch experiments with precipitated solids and stored urine from a urine-collecting system and later simulated the results with a computer model. We found that urease-active bacteria mainly grow in the pipes and are flushed into the collection tank. Both, bacteria and free urease, hydrolyse urea. Only few days are necessary for complete urea depletion in the collection tank. Two experiments with precipitated solids from the pipes showed that precipitation sets in soon after ureolysis has started. At the end of the experiments, 11% and 24% of urea was hydrolysed while the mass concentration of newly formed precipitates already corresponded to 87% and 97% of the precipitation potential, respectively. We could simulate ureolysis and precipitation with a computer model based on the surface dislocation approach. The simulations showed that struvite and octacalcium phosphate (OCP) are the precipitating minerals. While struvite precipitates already at low supersaturation, OCP precipitation starts not until a high level of supersaturation is reached. Since measurements and computer simulations show that hydroxyapatite (HAP) is the final calcium phosphate mineral in urine solutions, OCP is only a precursor phase which slowly transforms into HAP.


Water Research | 2011

Low-cost struvite production using source-separated urine in Nepal

Bastian Etter; Elizabeth Tilley; R. Khadka; Kai M. Udert

This research investigated the possibility of transferring phosphorus from human urine into a concentrated form that can be used as fertilizer in agriculture. The community of Siddhipur in Nepal was chosen as a research site, because there is a strong presence and acceptance of the urine-diverting dry toilets needed to collect urine separately at the source. Furthermore, because the mainly agricultural country is landlocked and depends on expensive, imported fertilizers, the need for nutrient security is high. We found that struvite (MgNH(4)PO(4)·6H(2)O) precipitation from urine is an efficient and simple approach to produce a granulated phosphorus fertilizer. Bittern, a waste stream from salt production, is a practical magnesium source for struvite production, but it has to be imported from India. Calculations show that magnesium oxide produced from locally available magnesite would be a cheaper magnesium source. A reactor with an external filtration system was capable of removing over 90% of phosphorus with a low magnesium dosage (1.1 mol Mg mol P), with coarse nylon filters (pore width up to 160±50 μm) and with only one hour total treatment time. A second reactor setup based on sedimentation only achieved 50% phosphate removal, even when flocculants were added. Given the current fertilizer prices, high volumes of urine must be processed, if struvite recovery should be financially sustainable. Therefore, it is important to optimize the process. Our calculations showed that collecting the struvite and calcium phosphate precipitated spontaneously due to urea hydrolysis could increase the overall phosphate recovery by at least 40%. The magnesium dosage can be optimized by estimating the phosphate concentration by measuring electrical conductivity. An important source of additional revenue could be the effluent of the struvite reactor. Further research should be aimed at finding methods and technologies to recover the nutrients from the effluent.


Water Research | 2003

Estimating the precipitation potential in urine-collecting systems

Kai M. Udert; Tove A. Larsen; Willi Gujer

Precipitation in urine-separating toilets (NoMix toilets) and waterless urinals causes severe maintenance problems and can strongly reduce the content of soluble phosphate. In this study, we present a computer model for estimating the precipitation potential (PP) in urine-collecting systems. Calculating the PP enables to predict the composition and mass concentration of precipitates. We used our computer model for investigating how urea hydrolysis and dilution with flushing water affect precipitation. In a previous study, we found that microbial urea hydrolysis (ureolysis) triggers precipitation and that the amount of precipitates is limited by calcium and magnesium. With the present simulations, we could confirm these findings. We determined that only a small fraction of urea has to be hydrolysed for reaching 95% of the maximum PP. Since urease-positive bacteria are abundant in urine-collecting systems, strong precipitation is very likely. In further simulations, we determined that struvite (MgNH(4)PO(4).6H(2)O) and hydroxyapatite (HAP, Ca(10)(PO(4))(6)(OH)(2)) are the main precipitate compounds. If urine is highly diluted with tapwater, calcite (CaCO(3)) occurs as well. HAP is the only calcium phosphate mineral, although several others were supersaturated. Additionally, the simulations indicated that urine dilution diminishes the risk of blockages, since the mass concentration of precipitates decreases with the volume of flushing water. Rainwater flushing is more effective than flushing with tapwater. Moreover, flushing with tapwater leads to high phosphate fixation, because the total amount of calcium and magnesium ions increases, while the total amount of phosphate keeps constant. Finally, we compared simulation results with field measurements and found good agreement at low and very high urine dilution.


Frontiers in Microbiology | 2012

Nitric oxide and nitrous oxide turnover in natural and engineered microbial communities: biological pathways, chemical reactions, and novel technologies

Frank Schreiber; Pascal Wunderlin; Kai M. Udert; George F. Wells

Nitrous oxide (N2O) is an environmentally important atmospheric trace gas because it is an effective greenhouse gas and it leads to ozone depletion through photo-chemical nitric oxide (NO) production in the stratosphere. Mitigating its steady increase in atmospheric concentration requires an understanding of the mechanisms that lead to its formation in natural and engineered microbial communities. N2O is formed biologically from the oxidation of hydroxylamine (NH2OH) or the reduction of nitrite (NO−2) to NO and further to N2O. Our review of the biological pathways for N2O production shows that apparently all organisms and pathways known to be involved in the catabolic branch of microbial N-cycle have the potential to catalyze the reduction of NO−2 to NO and the further reduction of NO to N2O, while N2O formation from NH2OH is only performed by ammonia oxidizing bacteria (AOB). In addition to biological pathways, we review important chemical reactions that can lead to NO and N2O formation due to the reactivity of NO−2, NH2OH, and nitroxyl (HNO). Moreover, biological N2O formation is highly dynamic in response to N-imbalance imposed on a system. Thus, understanding NO formation and capturing the dynamics of NO and N2O build-up are key to understand mechanisms of N2O release. Here, we discuss novel technologies that allow experiments on NO and N2O formation at high temporal resolution, namely NO and N2O microelectrodes and the dynamic analysis of the isotopic signature of N2O with quantum cascade laser absorption spectroscopy (QCLAS). In addition, we introduce other techniques that use the isotopic composition of N2O to distinguish production pathways and findings that were made with emerging molecular techniques in complex environments. Finally, we discuss how a combination of the presented tools might help to address important open questions on pathways and controls of nitrogen flow through complex microbial communities that eventually lead to N2O build-up.


Water Science and Technology | 2008

Combining biocatalyzed electrolysis with anaerobic digestion

Peter Clauwaert; R. Tolêdo; D. van der Ha; Roselien Crab; Willy Verstraete; H. Hu; Kai M. Udert; Korneel Rabaey

Biocatalyzed electrolysis is a microbial fuel cell based technology for the generation of hydrogen gas and other reduced products out of electron donors. Examples of electron donors are acetate and wastewater. An external power supply can support the process and therefore circumvent thermodynamical constraints that normally render the generation of compounds such as hydrogen unlikely. We have investigated the possibility of biocatalyzed electrolysis for the generation of methane. The cathodically produced hydrogen could be converted into methane at a ratio of 0.41 mole methane mole(-1) acetate, at temperatures of 22+/-2 degrees C. The anodic oxidation of acetate was not hampered by ammonium concentrations up to 5 g N L(-1). An overview is given of potential applications for biocatalyzed electrolysis.


Water Research | 2012

Complete nutrient recovery from source-separated urine by nitrification and distillation

Kai M. Udert; M. Wächter

In this study we present a method to recover all nutrients from source-separated urine in a dry solid by combining biological nitrification with distillation. In a first process step, a membrane-aerated biofilm reactor was operated stably for more than 12 months, producing a nutrient solution with a pH between 6.2 and 7.0 (depending on the pH set-point), and an ammonium to nitrate ratio between 0.87 and 1.15 gN gN(-1). The maximum nitrification rate was 1.8 ± 0.3 gN m(-2) d(-1). Process stability was achieved by controlling the pH via the influent. In the second process step, real nitrified urine and synthetic solutions were concentrated in lab-scale distillation reactors. All nutrients were recovered in a dry powder except for some ammonia (less than 3% of total nitrogen). We estimate that the primary energy demand for a simple nitrification/distillation process is four to five times higher than removing nitrogen and phosphorus in a conventional wastewater treatment plant and producing the equivalent amount of phosphorus and nitrogen fertilizers. However, the primary energy demand can be reduced to values very close to conventional treatment, if 80% of the water is removed with reverse osmosis and distillation is operated with vapor compression. The ammonium nitrate content of the solid residue is below the limit at which stringent EU safety regulations for fertilizers come into effect; nevertheless, we propose some additional process steps that will increase the thermal stability of the solid product.


Water intelligence online | 2013

Source separation and decentralization for wastewater management.

Tove A. Larsen; Kai M. Udert; Judit Lienert

Is sewer-based wastewater treatment really the optimal technical solution in urban water management? This paradigm is increasingly being questioned. Growing water scarcity and the insight that water will be an important limiting factor for the quality of urban life are main drivers for new approaches in wastewater management. Source Separation and Decentralization for Wastewater Management sets up a comprehensive view of the resources involved in urban water management. It explores the potential of source separation and decentralization to provide viable alternatives to sewer-based urban water management. During the 1990s, several research groups started working on source-separating technologies for wastewater treatment. Source separation was not new, but had only been propagated as a cheap and environmentally friendly technology for the poor. The novelty was the discussion whether source separation could be a sustainable alternative to existing end-of-pipe systems, even in urban areas and industrialized countries. Since then, sustainable resource management and many different source-separating technologies have been investigated. The theoretical framework and also possible technologies have now developed to a more mature state. At the same time, many interesting technologies to process combined or concentrated wastewaters have evolved, which are equally suited for the treatment of source-separated domestic wastewater. The book presents a comprehensive view of the state of the art of source separation and decentralization. It discusses the technical possibilities and practical experience with source separation in different countries around the world. The area is in rapid development, but many of the fundamental insights presented in this book will stay valid. Source Separation and Decentralization for Wastewater Management is intended for all professionals and researchers interested in wastewater management, whether or not they are familiar with source separation. ISBN: 9781780401072 (eBook) ISBN: 9781843393481 (Print)


Water Research | 2013

Struvite precipitation from urine with electrochemical magnesium dosage

Alexandra Hug; Kai M. Udert

When magnesium is added to source-separated urine, struvite (MgNH(4)PO(4)·6H(2)O) precipitates and phosphorus can be recovered. Up to now, magnesium salts have been used as the main source of magnesium. Struvite precipitation with these salts works well but is challenging in decentralized reactors, where high automation of the dosage and small reactor sizes are required. In this study, we investigated a novel approach for magnesium dosage: magnesium was electrochemically dissolved from a sacrificial magnesium electrode. We demonstrated that this process is technically simple and economically feasible and thus interesting for decentralized reactors. Linear voltammetry and batch experiments at different anode potentials revealed that the anode potential must be higher than -0.9 V vs. NHE (normal hydrogen electrode) to overcome the strong passivation of the anode. An anode potential of -0.6 V vs. NHE seemed to be suitable for active magnesium dissolution. For 13 subsequent cycles at this potential, we achieved an average phosphate removal rate of 3.7 mg P cm(-2) h(-1), a current density of 5.5 mA cm(-2) and a current efficiency of 118%. Some magnesium carbonate (nesquehonite) accumulated on the anode surface; as a consequence, the current density decreased slightly, but the current efficiency was not affected. The energy consumption for these experiments was 1.7 W h g P(-1). A cost comparison showed that sacrificial magnesium electrodes are competitive with easily soluble magnesium salts such as MgCl(2) and MgSO(4), but are more expensive than dosing with MgO. Energy costs for the electrochemical process were insignificant. Dosing magnesium electrochemically could thus be a worthwhile alternative to dosing magnesium salts. Due to the simple reactor and handling of magnesium, this may well be a particularly interesting approach for decentralized urine treatment.


Science of The Total Environment | 2012

Wood Ash as a Magnesium Source for Phosphorus Recovery from Source-Separated Urine

S. Ramesh Sakthivel; Elizabeth Tilley; Kai M. Udert

Struvite precipitation is a simple technology for phosphorus recovery from source-separated urine. However, production costs can be high if expensive magnesium salts are used as precipitants. Therefore, waste products can be interesting alternatives to industrially-produced magnesium salts. We investigated the technical and financial feasibility of wood ash as a magnesium source in India. In batch experiments with source-separated urine, we could precipitate 99% of the phosphate with a magnesium dosage of 2.7 mol Mg mol P(-1). The availability of the magnesium from the wood ash used in our experiment was only about 50% but this could be increased by burning the wood at temperatures well above 600 °C. Depending on the wood ash used, the precipitate can contain high concentrations of heavy metals. This could be problematic if the precipitate were used as fertilizer depending on the applicable fertilizer regulations. The financial study revealed that wood ash is considerably cheaper than industrially-produced magnesium sources and even cheaper than bittern. However, the solid precipitated with wood ash is not pure struvite. Due to the high calcite and the low phosphorus content (3%), the precipitate would be better used as a phosphorus-enhanced conditioner for acidic soils. The estimated fertilizer value of the precipitate was actually slightly lower than wood ash, because 60% of the potassium dissolved into solution during precipitation and was not present in the final product. From a financial point of view and due to the high heavy metal content, wood ash is not a very suitable precipitant for struvite production. Phosphate precipitation from urine with wood ash can be useful if (1) a strong need for a soil conditioner that also contains phosphate exists, (2) potassium is abundant in the soil and (3) no other cheap precipitant, such as bittern or magnesium oxide, is available.


Water Research | 2011

Fate of the pathogen indicators phage ΦX174 and Ascaris suum eggs during the production of struvite fertilizer from source-separated urine

Loı̈c Decrey; Kai M. Udert; Elizabeth Tilley; Brian M. Pecson; Tamar Kohn

Human urine has the potential to be a sustainable, locally and continuously available source of nutrients for agriculture. Phosphate can be efficiently recovered from human urine in the form of the mineral struvite (MgNH4PO4·6H2O). However, struvite formation may be coupled with the precipitation of other constituents present in urine including pathogens, pharmaceuticals, and heavy metals. To determine if struvite fertilizer presents a microbiological health risk to producers and end users, we characterized the fate of a human virus surrogate (phage ΦX174) and the eggs of the helminth Ascaris suum during a low-cost struvite recovery process. While the concentration of phages was similar in both the struvite and the urine, Ascaris eggs accumulated within the solid during the precipitation and filtration process. Subsequent air-drying of the struvite filter cake partially inactivated both microorganisms; however, viable Ascaris eggs and infective phages were still detected after several days of drying. The infectivity of both viruses and eggs was affected by the specific struvite drying conditions: higher inactivation generally occurred with increased air temperature and decreased relative humidity. On a log-log scale, phage inactivation increased linearly with decreasing moisture content of the struvite, while Ascaris inactivation occurred only after achieving a minimum moisture threshold. Sunlight exposure did not directly affect the infectivity of phages or Ascaris eggs in struvite cakes, though the resultant rise in temperature accelerated the drying of the struvite cake, which contributed to inactivation.

Collaboration


Dive into the Kai M. Udert's collaboration.

Top Co-Authors

Avatar

Bastian Etter

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Tove A. Larsen

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Eberhard Morgenroth

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Tamar Kohn

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Alexandra Fumasoli

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Agnieszka Kapałka

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Christos Comninellis

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Elizabeth Tilley

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Linda Strande

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Loïc Decrey

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge