Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tamar Kohn is active.

Publication


Featured researches published by Tamar Kohn.


Journal of Environmental Monitoring | 2010

Pharmaceuticals and personal care products in effluent matrices: A survey of transformation and removal during wastewater treatment and implications for wastewater management

Rebekah Oulton; Tamar Kohn; David M. Cwiertny

Pharmaceuticals and personal care products (PPCPs) represent pollutants of emerging concern, originating in surface and drinking waters largely from their persistence in wastewater effluent. Accordingly, a wealth of recent investigations has examined PPCP fate during wastewater treatment, focusing on their removal during conventional (e.g., activated sludge) and advanced (e.g., ozonation and membrane filtration) treatment processes. Here, we compile nearly 1500 data points from over 40 published sources pertaining to influent and effluent PPCP concentrations measured at pilot- and full-scale wastewater treatment facilities to identify the most effective series of technologies for minimizing effluent PPCP levels. Available data suggest that at best a 1-log(10) concentration unit (90%) of PPCP removal can be achieved at plants employing only primary and secondary treatment, a performance trend that is maintained over the range of reported PPCP influent concentrations (ca. 0.1-10(5) ng L(-1)). Relatively few compounds (15 of 140 PPCPs considered) are consistently removed beyond this threshold at facilities using solids removal and conventional activated sludge (CAS), and most PPCPs are removed to a far lesser extent. Further, increases in CAS hydraulic retention time or sludge retention time do not appreciably increase removal beyond this limit. In contrast, plants employing advanced treatment methodologies, particularly ozonation and/or membranes, remove the vast majority of PPCPs beyond 1-log(10) concentration unit and oftentimes to levels below analytical detection limits in effluent. Data also indicate that passive approaches for tertiary treatment (e.g., wetlands and lagoons) represent promising options for PPCP removal. We conclude by addressing future challenges and frontiers in wastewater management posed by PPCPs including analytical needs for their real-time measurement, energy demands associated with advanced treatment technologies, and byproducts arising from transformation of PPCPs during treatment.


Environmental Science & Technology | 2012

Virus inactivation mechanisms: impact of disinfectants on virus function and structural integrity

Krista Wigginton; Brian M. Pecson; Therese Sigstam; Franziska Sara Bosshard; Tamar Kohn

Oxidative processes are often harnessed as tools for pathogen disinfection. Although the pathways responsible for bacterial inactivation with various biocides are fairly well understood, virus inactivation mechanisms are often contradictory or equivocal. In this study, we provide a quantitative analysis of the total damage incurred by a model virus (bacteriophage MS2) upon inactivation induced by five common virucidal agents (heat, UV, hypochlorous acid, singlet oxygen, and chlorine dioxide). Each treatment targets one or more virus functions to achieve inactivation: UV, singlet oxygen, and hypochlorous acid treatments generally render the genome nonreplicable, whereas chlorine dioxide and heat inhibit host-cell recognition/binding. Using a combination of quantitative analytical tools, we identified unique patterns of molecular level modifications in the virus proteins or genome that lead to the inhibition of these functions and eventually inactivation. UV and chlorine treatments, for example, cause site-specific capsid protein backbone cleavage that inhibits viral genome injection into the host cell. Combined, these results will aid in developing better methods for combating waterborne and foodborne viral pathogens and further our understanding of the adaptive changes viruses undergo in response to natural and anthropogenic stressors.


Applied and Environmental Microbiology | 2009

Quantitative PCR for determining the infectivity of bacteriophage MS2 upon inactivation by heat, UV-B radiation, and singlet oxygen: advantages and limitations of an enzymatic treatment to reduce false-positive results.

Brian M. Pecson; Luisa Valerio Martin; Tamar Kohn

ABSTRACT Health risks posed by waterborne viruses are difficult to assess because it is tedious or impossible to determine the infectivity of many viruses. Recent studies hypothesized that quantitative PCR (qPCR) could selectively quantify infective viruses if preceded by an enzymatic treatment (ET) to reduce confounding false-positive signals. The goal of this study was to determine if ET with qPCR (ET-qPCR) can be used to accurately quantify the infectivity of the human viral surrogate bacteriophage MS2 upon partial inactivation by three treatments (heating at 72°C, singlet oxygen, and UV radiation). Viruses were inactivated in buffered solutions and a lake water sample and assayed with culturing, qPCR, and ET-qPCR. To ensure that inactivating genome damage was fully captured, primer sets that covered the entire coding region were used. The susceptibility of different genome regions and the maximum genomic damage after each inactivating treatment were compared. We found that (i) qPCR alone caused false-positive results for all treatments, (ii) ET-qPCR significantly reduced (up to >5.2 log units) but did not eliminate the false-positive signals, and (iii) the elimination of false-positive signals differed between inactivating treatments. By assaying the whole coding region, we demonstrated that genome damage only partially accounts for virus inactivation. The possibility of achieving complete accordance between culture- and PCR-based assays is therefore called into doubt. Despite these differences, we postulate that ET-qPCR can track infectivity, given that decreases in infectivity were always accompanied by dose-dependent decreases in ET-qPCR signal. By decreasing false-positive signals, ET-qPCR improved the detection of infectivity loss relative to qPCR.


Environmental Science & Technology | 2010

Inactivation of MS2 coliphage in Fenton and Fenton-like systems: role of transition metals, hydrogen peroxide and sunlight

Jessica I. Nieto-Juarez; Katarzyna Pierzchła; Andrzej Sienkiewicz; Tamar Kohn

The inactivation of coliphage MS2 by iron- and copper-catalyzed Fenton systems was studied to assess the importance of this process for virus inactivation in natural systems and during water treatment by advanced oxidation processes. The influence of H(2)O(2) (3-50 microM) and metal (1-10 microM) concentrations, HO(*) production, and sunlight on inactivation was investigated. Inactivation was first order with respect to H(2)O(2), but the dependence on the metal concentration was more complex. In the Cu/H(2)O(2) system, the inactivation rate constant k(obs) increased with added Cu up to 2.5 microM, and then leveled off. This was consistent with Cu saturation of the solution, indicating that only soluble Cu contributed to inactivation. In contrast, inactivation in the Fe/H(2)O(2) system was governed by colloidal iron. Irradiation by sunlight only affected the Fe/H(2)O(2) system, leading to a 5.5-fold increase in k(obs) (up to 3.1 min(-1)). HO(*) production, measured by electron spin resonance, could not account for the observed inactivation in the Fe/H(2)O(2) system. Other oxidants, such as ferryl species, must therefore play a role. Experiments using bulk oxidant scavengers revealed that inactivation occurred by a caged mechanism involving oxidant production by metals located in close proximity to the virus. Overall, our results show that the Fenton/photo-Fenton process may serve as an efficient technology for virus disinfection.


Environmental Toxicology and Chemistry | 2010

Occurrence and fate of micropollutants in the Vidy Bay of Lake Geneva, Switzerland. Part II: Micropollutant removal between wastewater and raw drinking water.

Barbara Morasch; Florence Bonvin; Hans Reiser; Dominique Grandjean; Luiz Felippe De Alencastro; Chiara Perazzolo; Nathalie Chèvre; Tamar Kohn

The occurrence and removal of 58 pharmaceuticals, endocrine disruptors, corrosion inhibitors, biocides, and pesticides, were assessed in the wastewater treatment plant (WWTP) of the city of Lausanne, Switzerland, as well as in the effluent-receiving water body, the Vidy Bay of Lake Geneva. An analytical screening method to simultaneously measure all of the 58 micropollutants was developed based on ultra performance liquid chromatography coupled to a tandem mass spectrometer (UPLC-MS/MS). The selection of pharmaceuticals was primarily based on a prioritization study, which designated them as environmentally relevant for the Lake Geneva region. Except for the endocrine disruptor 17alpha-ethinylestradiol, all substances were detected in 24-h composite samples of wastewater entering the WWTP or in the treated effluent. Of these compounds, 40% were also detected in raw drinking water, pumped from the lake 3 km downstream of the WWTP. The contributions of dilution and degradation to micropollutant elimination between the WWTP outlet and the raw drinking water intake were established in different model scenarios using hypothetical residence times of the wastewater in Vidy Bay of 1, 4, or 90 d. Concentration decrease due to processes other than dilution was observed for diclofenac, beta-blockers, several antibiotics, corrosion inhibitors, and pesticides. Measured environmental concentrations (MECs) of pharmaceuticals were compared to the predicted environmental concentrations (PECs) determined in the prioritization study and agreed within one order of magnitude, but MECs were typically greater than the corresponding PECs. Predicted no-effect concentrations of the analgesic paracetamol, and the two antibiotics ciprofloxacin and sulfamethoxazole, were exceeded in raw drinking water samples and therefore present a potential risk to the ecosystem.


Environmental Science & Technology | 2013

Direct Photolysis of Human Metabolites of the Antibiotic Sulfamethoxazole: Evidence for Abiotic Back-Transformation

Florence Bonvin; Julien Omlin; Rebecca Rutler; W. Bernd Schweizer; Peter J. Alaimo; Timothy J. Strathmann; Kristopher McNeill; Tamar Kohn

The presence of potentially persistent and bioactive human metabolites in surface waters gives rise to concern; yet little is known to date about the environmental fate of these compounds. This work investigates the direct photolysis of human metabolites of the antibiotic sulfamethoxazole (SMX). In particular, we determined photolysis kinetics and products, as well as their concentrations in lake water. SMX, N-acetyl sulfamethoxazole, sulfamethoxazole β-D-glucuronide, 4-nitroso sulfamethoxazole, and 4-nitro sulfamethoxazole were irradiated under various light sources and pH conditions. All investigated metabolites, except sulfamethoxazole β-D-glucuronide were found to be more photostable than SMX under environmentally relevant conditions. Between two and nine confirmed photoproducts were identified for SMX-metabolites through ultraperformance liquid chromatography/high-resolution mass spectrometry. Interestingly, photolytic back-transformation to SMX was observed for 4-nitroso-SMX, indicating that this metabolite may serve as an environmental source of SMX. Moreover, two human metabolites along with SMX were regularly detected in Lake Geneva. The knowledge that some metabolites retain biological activity, combined with their presence in the environment and their potential to retransform to the parent compound, underlines the importance of including human metabolites when assessing the effects of pharmaceuticals in the environment.


Environmental Science & Technology | 2011

Role of temperature and Suwannee river natural organic matter on inactivation kinetics of rotavirus and bacteriophage MS2 by solar irradiation

O. Romero; Anthony P. Straub; Tamar Kohn; Thanh H. Nguyen

Although the sunlight-mediated inactivation of viruses has been recognized as an important process that controls surface water quality, the mechanisms of virus inactivation by sunlight are not yet clearly understood. We investigated the synergistic role of temperature and Suwannee River natural organic matter (SRNOM), an exogenous sensitizer, for sunlight-mediated inactivation of porcine rotavirus and MS2 bacteriophage. Upon irradiation by a full spectrum of simulated sunlight in the absence of SRNOM and in the temperature range of 14-42 °C, high inactivation rate constants, k(obs), of MS2 (k(obs) ≤ 3.8 h(-1) or 1-log(10) over 0.6 h) and rotavirus (k(obs) ≤ 11.8 h(-1) or ∼1-log(10) over 0.2 h) were measured. A weak temperature (14-42 °C) dependence of k(obs) values was observed for both viruses irradiated by the full sunlight spectrum. Under the same irradiation condition, the presence of SRNOM reduced the inactivation of both viruses due to attenuation of lower wavelengths of the simulated sunlight. For rotavirus and MS2 solutions irradiated by only UVA and visible light in the absence of SRNOM, inactivation kinetics were slow (k(obs) < 0.3 h(-1) or <1-log(10) unit reduction over 7 h) and temperature-independent for the range considered. Conversely, under UVA and visible light irradiation and in the presence of SRNOM, temperature-dependent inactivation of MS2 was observed. For rotavirus, the SRNOM-mediated exogenous inactivation was only important at temperatures >33 °C, with low rotavirus k(obs) values (k(obs) ≈ 0.2 h(-1); 1-log(10) unit reduction over 12 h) for the temperature range of 14-33 °C. These k(obs) values increased to 0.5 h(-1) at 43 °C and 1.5 h(-1) (1-log(10) reduction over 1.6 h) at 50 °C. While SRNOM-mediated exogenous inactivation of MS2 was triggered by singlet oxygen, the presence of hydrogen peroxide was important for rotavirus inactivation in the 40-50 °C range.


Environmental Science & Technology | 2011

Spatial and Temporal Presence of a Wastewater-Derived Micropollutant Plume in Lake Geneva

Florence Bonvin; Rebecca Rutler; Nathalie Chèvre; Janine Halder; Tamar Kohn

This study discusses the occurrence and environmental risk associated with a micropollutant plume originating from the direct discharge of treated wastewater into the Vidy Bay of Lake Geneva, Switzerland. The temporal variations and spatial extent of the plume and its effect on the presence of 39 pharmaceuticals and other micropollutants in the Vidy Bay were assessed over a 10 month period. A pronounced plume was observed from April to October, leading to locally elevated (up to 70-fold) pharmaceutical concentrations compared to the surrounding water column. For three of the measured substances, these plume-associated concentrations were sufficiently high to pose an ecotoxicological risk. The plume depth followed the thermal lake stratification, which moved to lower depths over the course of the warm seasons. Pharmaceutical hotspots associated with the plume were detected as far as 1.5 km downstream of the effluent wastewater outfall, but concentrations typically decreased with increasing distance from the wastewater outfall as a result of dilution and photodegradation. From November to January, when uniform temperature prevailed throughout the water column, no micropollutant plumes were detected. In contrast to pharmaceuticals, most pesticides showed homogeneous concentrations throughout the Vidy Bay during the whole study period, indicating that the effluent wastewater was not their dominant source. A strong linear correlation between electrical conductivity and concentrations of wastewater-derived micropollutants was identified. This relation will allow future estimates of wastewater-derived micropollutant concentrations via simple conductivity measurements.


Environmental Science & Technology | 2010

Oxidation of virus proteins during UV254 and singlet oxygen mediated inactivation.

Krista Wigginton; Laure Menin; Jonathan Paz Montoya; Tamar Kohn

Despite the widespread use of UV(254) irradiation and solar disinfection for water treatment, little is known about the photochemical pathways that lead to virus inactivation by these treatments. The goal of this study was to identify reactions that occur in virus capsid proteins upon treatment by UV(254) irradiation and (1)O(2), an important oxidant involved in sunlight-mediated disinfection. Bacteriophage MS2 was inactivated via UV(254) irradiation and exposure to (1)O(2) in buffered water, and their capsid proteins were then analyzed with MALDI-TOF-TOF and ESI-TOF before and after digestion with protease enzymes. The results demonstrate that chemical modifications occur in the MS2 major capsid protein with both treatments. One oxidation event was detected following (1)O(2) treatment in an amino acid residue located on the capsid outer surface. UV(254) treatment caused three chemical reactions in the capsid proteins, two of which were oxidation reactions with residues on the capsid outer surface. A site-specific cleavage also occurred with UV(254) irradiation at a protein chain location on the inside face of the capsid shell. We attribute this UV(254) induced protein scission, which is nearly unprecedented in the literature, to a close association between the affected residues and viral RNA, an efficient UV(254) absorber. These results suggest that viral protein oxidation by UV(254) and (1)O(2) may play a role in virus inactivation and that viral inactivation may be tracked with mass spectrometric measurements.


Current Opinion in Virology | 2012

Virus disinfection mechanisms: the role of virus composition, structure, and function

Krista Wigginton; Tamar Kohn

Drinking waters are treated for enteric virus via a number of disinfection techniques including chemical oxidants, irradiation, and heat, however the inactivation mechanisms during disinfection remain elusive. Owing to the fact that a number of significant waterborne virus strains are not readily culturable in vitro at this time (e.g. norovirus, hepatitis A), the susceptibility of these viruses to disinfection is largely unknown. An in-depth understanding of the mechanisms involved in virus inactivation would aid in predicting the susceptibility of non-culturable virus strains to disinfection and would foster the development of improved disinfection methods. Recent technological advances in virology research have provided a wealth of information on enteric virus compositions, structures, and biological functions. This knowledge will allow for physical/chemical descriptions of virus inactivation and thus further our understanding of virus disinfection to the most basic mechanistic level.

Collaboration


Dive into the Tamar Kohn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Brian M. Pecson

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Florence Bonvin

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Michael J. Mattle

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Kai M. Udert

Swiss Federal Institute of Aquatic Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Qingxia Zhong

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Therese Sigstam

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Loïc Decrey

École Polytechnique Fédérale de Lausanne

View shared research outputs
Top Co-Authors

Avatar

Virginie Bachmann

École Polytechnique Fédérale de Lausanne

View shared research outputs
Researchain Logo
Decentralizing Knowledge