Kai Ostermann
Dresden University of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kai Ostermann.
Current Genetics | 1999
Anja Rentzsch; Krummeck-Weiss G; Hofer A; Bartuschka A; Kai Ostermann; Gerhard Rödel
Saccharomyces cerevisiae Sco1p is believed to be involved in the transfer of copper from the carrier Cox17p to the mitochondrial cytochrome c oxidase subunits 1 and 2. We here report on the results of a mutational analysis of Sco1p. The two cysteine residues of a potential metal-binding motif (CxxxC) are essential for protein function as shown by their substitution by alanines. Chimeras consisting of Sco1p and its homolog S. cerevisiae Sco2p restrict the specificity of Sco1p function to the N-terminal half of the protein. A candidate region for conferring specificity on Sco1p is a stretch of hydrophobic amino acids, which act as a membrane anchor. In line with this suggestion is the result that alterations of individual amino acids within this region impair Sco1p function.
Current Genetics | 2005
Oleh Khalimonchuk; Kai Ostermann; Gerhard Rödel
Cytochrome c oxidase is the terminal enzyme of the mitochondrial (mt) respiratory chain. It contains copper ions, which are organized in two centres, CuA and CuB. The CuA site of subunit Cox2p is exposed to the mt intermembrane space, while the CuB site of subunit Cox1p is buried in the inner mt membrane. Incorporation of copper into the two centres is crucial for the assembly and activity of the enzyme. Formation of the CuB site is dependent on Cox11p, a copper-binding protein of the mt inner membrane. Here, we experimentally prove that Cox11p possesses a Nin–Cout topology, with the C-terminal copper-binding domain exposed in the mt intermembrane space. Furthermore, we provide evidence for the association of Cox11p with the mt translation machinery. We propose a model in which the CuB site is co-translationally formed by a transient interaction between Cox11p and the nascent Cox1p in the intermembrane space.
Science Advances | 2016
Christof P. Dietrich; Anja Steude; Laura Tropf; Marcel Schubert; Nils M. Kronenberg; Kai Ostermann; Sven Höfling; Malte C. Gather
Microcavities filled with biologically produced green fluorescent protein show polariton condensation at room temperature. Under adequate conditions, cavity polaritons form a macroscopic coherent quantum state, known as polariton condensate. Compared to Wannier-Mott excitons in inorganic semiconductors, the localized Frenkel excitons in organic emitter materials show weaker interaction with each other but stronger coupling to light, which recently enabled the first realization of a polariton condensate at room temperature. However, this required ultrafast optical pumping, which limits the applications of organic polariton condensates. We demonstrate room temperature polariton condensates of cavity polaritons in simple laminated microcavities filled with biologically produced enhanced green fluorescent protein (eGFP). The unique molecular structure of eGFP prevents exciton annihilation even at high excitation densities, thus facilitating polariton condensation under conventional nanosecond pumping. Condensation is clearly evidenced by a distinct threshold, an interaction-induced blueshift of the condensate, long-range coherence, and the presence of a second threshold at higher excitation density that is associated with the onset of photon lasing.
FEBS Letters | 1999
Claudia Paret; Kai Ostermann; Udo Krause-Buchholz; Anja Rentzsch; Gerhard Rödel
Cytochrome c oxidase is a multiprotein complex in the mitochondrial membrane whose biogenesis requires a number of proteins besides the structural subunits. Several yeast proteins as well as a human disease‐related protein have been reported which are involved in cytochrome c oxidase assembly. The S. cerevisiae Sco1p protein has been implicated in the transfer of copper to cytochrome c oxidase subunits Cox1p and/or Cox2p. Here we report on the complementation behavior in yeast of two recently identified ScSco1p homologs of chromosome 17 and chromosome 22 from human. When allotropically expressed in yeast, both genes fail to complement the lack of the ScSCO1 gene. However, a chimera of the N‐terminal half of ScSco1p and the C‐terminal half of the chromosome 17 homolog does substitute for the ScSco1p function. Interestingly, the respective chimera with the human homolog of chromosome 22 is not able to complement. Expression of EGFP fusions in HeLa cells shows that both human ScSco1p homologs are located in the mitochondria of human cells.
Journal of Biological Engineering | 2015
Stefan Hennig; Gerhard Rödel; Kai Ostermann
Cell-cell communication is a widespread phenomenon in nature, ranging from bacterial quorum sensing and fungal pheromone communication to cellular crosstalk in multicellular eukaryotes. These communication modes offer the possibility to control the behavior of an entire community by modifying the performance of individual cells in specific ways. Synthetic biology, i.e., the implementation of artificial functions within biological systems, is a promising approach towards the engineering of sophisticated, autonomous devices based on specifically functionalized cells. With the growing complexity of the functions performed by such systems, both the risk of circuit crosstalk and the metabolic burden resulting from the expression of numerous foreign genes are increasing. Therefore, systems based on a single type of cells are no longer feasible. Synthetic biology approaches with multiple subpopulations of specifically functionalized cells, wired by artificial cell-cell communication systems, provide an attractive and powerful alternative. Here we review recent applications of synthetic cell-cell communication systems with a specific focus on recent advances with fungal hosts.
Langmuir | 2011
Manfred Bobeth; Andreas Blecha; Anja Blüher; Michael Mertig; Nuriye Korkmaz; Kai Ostermann; Gerhard Rödel; Wolfgang Pompe
Based on experimental studies on tube formation during self-assembly of bacterial surface (S)-layers, a mechanistic model for describing the underlying basic mechanisms is proposed and the effect of process parameters on growth velocity and tube radius is investigated. The S-layer is modeled as a curved sheet with discrete binding sites for the association of monomers distributed along the S-layer edges. Reported changes of the tube radius owing to genetic protein modifications are explained within the framework of continuum mechanics. S-layer growth velocity and shape development are analyzed by Monte Carlo simulation in their dependence on the attachment and detachment frequencies of monomers at the S-layer. For curved S-layer patches, a criterion for the formation of S-layer tubes is derived. Accordingly, tubes can form only within a certain range of the initial monomer concentration. Furthermore, the effect of calcium ion concentration on tube formation is discussed, including recent experimental findings on the calcium effect.
Eukaryotic Cell | 2006
Oleh Khalimonchuk; Martin Ott; Soledad Funes; Kai Ostermann; Gerhard Rödel; Johannes M. Herrmann
ABSTRACT The sequencing of the genome of Schizosaccharomyces pombe revealed the presence of a number of genes encoding tandem proteins, some of which are mitochondrial components. One of these proteins (pre-Rsm22-Cox11) consists of a fusion of Rsm22, a component of the mitochondrial ribosome, and Cox11, a factor required for copper insertion into cytochrome oxidase. Since in Saccharomyces cerevisiae, Cox11 is physically attached to the mitochondrial ribosome, it was suggested that the tandem organization of Rsm22-Cox11 is used to covalently tie the mitochondrial ribosome to Cox11 in S. pombe. We report here that pre-Rsm22-Cox11 is matured in two subsequent processing events. First, the mitochondrial presequence is removed. At a later stage of the import process, the Rsm22 and Cox11 domains are separated by cleavage of the mitochondrial processing peptidase at an internal processing site. In vivo data obtained using a tagged version of pre-Rsm22-Cox11 confirmed the proteolytic separation of Cox11 from the Rsm22 domain. Hence, the tandem organization of pre-Rsm22-Cox11 does not give rise to a persistent fusion protein but rather might be used to increase the import efficiency of Cox11 and/or to coordinate expression levels of Rsm22 and Cox11 in S. pombe.
Engineering in Life Sciences | 2012
Kirsten Kottmeier; Tobias Günther; Jost Weber; Susann Kurtz; Kai Ostermann; Gerhard Rödel; Thomas Bley
Hydrophobins are small surface‐active proteins that have considerable potential for use in applications ranging from medical and technical coatings, separation technologies, biosensors, and personal care. Their wider use would be facilitated by the availability of recombinant tailor‐made hydrophobins. We successfully expressed the class II hydrophobin HFB1 from Trichoderma reesei in Pichia pastoris under the control of the constitutive GAP (glyceraldehyde 3‐phosphate dehydrogenase) promoter. Avoiding the use of the AOX1 (alcohol oxidase 1) promoter prevents the costs and risks associated with the storage and delivery of methanol used as an inducer. Efficient secretion of hydrophobin was achieved using either the alpha‐factor prepro‐peptide or the native secretion signal of HFB1. The secreted hydrophobins have been isolated with a purity of up to 70% using in situ foam separation during the cultivation process. Coating experiments and surface pressure measurements demonstrated the activity of the hydrophobins. An immunodot assay showed the accessibility of carboxyterminally fused tags of the hydrophobin, which is necessary for potential applications using functionalized hydrophobins. The presented data show that Pichia pastoris is a suitable system for production of constitutively expressed and secreted active hydrophobin, allowing for in situ pre‐purification using foam separation.
Letters in Applied Microbiology | 2011
A. Groß; Gerhard Rödel; Kai Ostermann
Aims: The aim of the work is to exploit the yeast pheromone system for controlled cell–cell communication and as an amplification circuit in technical applications, e.g. biosensors or sensor‐actor systems.
Langmuir | 2012
Leopold J. Gruner; Kai Ostermann; Gerhard Rödel
In nanobiotechnology, the properties of surfaces are often key to sensor applications. If analytes possess a low tolerance or affinity regarding the sensory substrate (surface), then the setup of mediators may be indicated. Hydrophobins enable biocompatible surface functionalization without significant restrictions of the physicochemical substrate properties. Because of the imperfect formation of hydrophobin films, a high variation in surface properties is observed. In this study, we report on the relation between the film thickness of hydrophobin-coated solid surfaces and their wettability. We found that the wettability of protein-coated surfaces strictly depends on the amount of adsorbed protein, as reflected in an oscillation of the contact angles of hydrophobin-coated silicon wafers. Fusion proteins of Ccg2 and HFBI, representatives of class I and II hydrophobins, document the influence of fused peptide tags on the wettability. The orientation of the first crystal nuclei plays a decisive role in the formation of the growing hydrophobin layers. Here, a simple method of deducing the film thickness of hydrophobin assemblies on solid surfaces is presented. The determination of the static contact angle allows the prediction of which part of the protein is exposed to possible analytes.