Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kaifu Ke is active.

Publication


Featured researches published by Kaifu Ke.


Neurochemical Research | 2013

Pyrroloquinoline quinine protects rat brain cortex against acute glutamate-induced neurotoxicity.

Qi Zhang; Mei Ding; Zheng Cao; Jingjing Zhang; Fei Ding; Kaifu Ke

To investigate possible protective effects of pyrroloquinoline quinone (PQQ) on the rat cortex with glutamate injection and to understand the mechanisms linking the in vivo neuroprotection of PQQ. Adult Sprague–Dawley rats received glutamate injection into the rat cortex. Terminal deoxynucleotidyl transferase biotin-dUTP nick end labeling assay was performed to observe influences of co-treatment with PQQ (simultaneous injection with PQQ and glutamate) on neural cell apoptosis in the rat cortex. The production of reactive oxygen species (ROS) in the rat cortex was detected by flow cytometry using 2′,7′-dichlorofluorescin diacetate labeling, and the activity of superoxide dismutase, glutathione and malondialdehyde was respectively determined. Real time quantitative RT-PCR and Western blot were applied to measure the mRNA and protein expressions of Nrf1, Nrf2, HO-1 and GCLC in the rat cortex. Western blot was used to detect the phosphorylation of Akt and GSK3β in the rat cortex. Co-treatment with PQQ protected neural cells in the rat cortex from glutamate-induced apoptosis. PQQ decreased the ROS production induced by glutamate injection. PQQ increased the mRNA and protein expressions of Nrf2, HO-1 and GCLC and the phosphorylation of Akt and GSK3β in the cortex of glutamate-injected rats. PQQ could produce neuroprotective effects on the rat cortex. The antioxidant properties of PQQ and PQQ-induced activation of Akt/GSK3β signal pathway might be responsible for the in vivo neuroprotection of PQQ.


Journal of Molecular Neuroscience | 2012

Cyclic AMP Response Element Modulator-1 (CREM-1) Involves in Neuronal Apoptosis after Traumatic Brain Injury

Xinmin Wu; Wei Jin; Xiaojuan Liu; Hongran Fu; Peipei Gong; Jian Xu; Gang Cui; Yaohui Ni; Kaifu Ke; Zhiwei Gao; Yilu Gao

The cyclic AMP response element-binding protein (CREB) family can regulate biological functions of various types of cells by forming homo- or heterodimers to bind the target DNA sequences; it plays an essential role in individual neuronal function and entire neuronal circuits. One attractive activity of the CREB family is regulating the transcription of apoptosis-suppressor gene bcl-2. Cyclic AMP response element modulator-1 (CREM-1) is one member of the family with limited acquaintance. To investigate whether CREM-1 is involved in central nervous system injury and repair, we performed an acute traumatic brain injury (TBI) model in adult rats. Western blot analysis and immunohistochemistry showed a significant upregulation of CREM-1 in ipsilateral peritrauma cortex. Immunofluorescent labeling indicated that CREM-1 was localized mainly in the nuclei of neurons; co-localization of CREM-1 and active-caspase-3 in the ipsilateral cortex suggested that CREM-1 might participate in neuronal apoptosis. To further investigate the function of CREM-1, a neuronal cell line PC12 was employed to establish an apoptosis model. We analyzed the association of CREM-1 with p-CREB on PC12 cells by Western blot, immunofluorescent labeling, and co-immunoprecipitation. The result implied that the association of CREM-1 with p-CREB was enhanced in apoptotic cells. Additionally, knocking CREM-1 down with siRNA demonstrated the probable pro-apoptotic role played by CREM-1 in neuronal apoptosis. Together with our data, we hypothesized that CREM-1 might play an important role in regulating neuronal death after TBI by interacting with CREB.


Cellular and Molecular Neurobiology | 2013

Up-regulation of NFATc4 Involves in Neuronal Apoptosis Following Intracerebral Hemorrhage

Lei Li; Kaifu Ke; Xiang Tan; Wei Xu; Jiabing Shen; Tingting Zhai; Ling Xu; Ying Rui; Heyi Zheng; Peipei Zhai; Jianghua Zhao; Maohong Cao

Nuclear factor of activated T-cells, cytoplasmic 4 (NFATc4), a transcriptional factor, is involved in the control about the flow of genetic information and the modulation of diverse cellular activities. Accumulating evidence has demonstrated that NFATc4 exerted a pro-apoptotic effect in multiple diseases. Here, we explored the NFATc4’s roles during the pathophysiological processes of intracerebral hemorrhage (ICH). An ICH rat model was built and evaluated according to behavioral testing. Using Western blot, immunohistochemistry, and immunofluorescence, significant up-regulation of NFATc4 was found in neurons in brain areas surrounding the hematoma following ICH. Increasing NFATc4 expression was found to be accompanied by the up-regulation of Fas ligand (FasL), active caspase-8, and active caspase-3, respectively. Besides, NFATc4 co-localized with active caspase-3 in neurons, indicating its role in neuronal apoptosis. Our in vitro study, using NFATc4 RNA interference in PC12 cells, further confirmed that NFATc4 might exert its pro-apoptotic function in neuronal apoptosis through extrinsic pathway. Thus, NFATc4 may play a role in promoting the brain secondary damage following ICH.


Journal of Molecular Neuroscience | 2013

Increased Expression of Small Heat Shock Protein αB-crystallin After Intracerebral Hemorrhage in Adult Rats

Kaifu Ke; Lei Li; Ying Rui; Heyi Zheng; Xiang Tan; Wei Xu; Jianhua Cao; Jian Xu; Gang Cui; Guangfei Xu; Maohong Cao

AbstractαB-crystallin (αBC) is involved in diverse cellular activities. Previous studies demonstrated that αBC had anti-apoptotic and proliferation-promoting effects in multiple diseases. Here, we explored the αBC’s roles in the pathophysiology of intracerebral hemorrhage (ICH). An ICH rat model was established and assessed by behavioral tests. Using Western blot and immunohistochemistry, significant up-regulation of αBC was found in neurons and astrocytes in brain areas surrounding the hematoma following ICH. Increase of αBC expression was found to be accompanied by the increased expression of proliferating cell nuclear antigen (PCNA), p53, Bax, and active-caspase-3. αBC was co-localized with PCNA in astrocytes or active-caspase-3 in neurons, suggesting its role in astrocyte proliferation and neuronal apoptosis. Our in vitro study, using αBC RNA interference in PC12 cells, indicated that αBC might exert its anti-apoptotic function in neuronal apoptosis. Thus, αBC may play a role in protecting the brain from secondary damage following ICH.


Neurochemistry International | 2013

Upregulation of Ras homolog enriched in the brain (Rheb) in lipopolysaccharide-induced neuroinflammation.

Maohong Cao; Xiang Tan; Wei Jin; Heyi Zheng; Wei Xu; Ying Rui; Lei Li; Jianhua Cao; Xiaohong Wu; Gang Cui; Kaifu Ke; Yilu Gao

Ras homolog enriched in the brain (Rheb) is a homolog of Ras GTPase that regulates cell growth, proliferation, and cell cycle via mammalian target of rapamycin (mTOR). Recently, it has been confirmed that Rheb activation not only promotes cellular proliferation and differentiation but also enhances cellular apoptosis in response to diverse toxic stimuli. However, the function of Rheb in the central nervous system (CNS) is still with limited understanding. To elaborate whether Rheb was involved in CNS injury, we performed a neuroinflammatory model by lipopolysaccharide (LPS) lateral ventral injection in adult rats. Upregulation of Rheb was observed in the brain cortex by performing western blotting and immunohistochemistry. Double immunofluorescent staining demonstrated that Rheb was mainly in active astrocytes and neurons. PCNA and active caspase-3 were upregulated, and co-labeling with Rheb, which indicated that Rheb might be relevant to astrocytic proliferation and neuronal apoptosis following the inflammatory response by LPS-induced. Furthermore, we also found that the expression profiles of cyclinD1 and CDK4 were parallel with that of Rheb in a time-space dependent manner. Finally, knocking down Rheb by siRNA and treatment with rapamycin or lovastatin showed that not only astrocytic proliferation decreased but also neuronal protection. Based on our data, we suggested that Rheb might play an important role in physiological and pathological functions following neuroinflammation caused by LPS, which might provide a potential target to the treatment of neuroinflammation.


Journal of Molecular Histology | 2013

The member of high temperature requirement family HtrA2 participates in neuronal apoptosis after intracerebral hemorrhage in adult rats

Huiqing Sun; Lei Li; Feng Zhou; Lin Zhu; Kaifu Ke; Xiang Tan; Wei Xu; Ying Rui; Heyi Zheng; Zhengming Zhou; Huiguang Yang

The members of high-temperature requirement (HtrA) family are evolutionarily conserved serine proteases that combine a trypsin-like protease domain with at least one PDZ interaction domain. HtrA2, a special one, is mainly located in mitochondria and required for maintaining homeostasis. Once released into cytoplasm, HtrA2 contributes to apoptosis via caspase-dependent and -independent pathways. Accumulating evidence has showed its pro-apoptotic effect in cancers and central nervous system (CNS) diseases. However, the distribution and function of HtrA2 in CNS diseases remains to be further explored. To investigate HtrA2’s roles in the pathophysiology of intracerebral hemorrhage (ICH), an ICH rat model was established and assessed by behavioral tests. Western blot and immunohistochemistry revealed a remarkable up-regulation of HtrA2 surrounding the hematoma after ICH; and immunofluorescence showed HtrA2 was strikingly increased in neurons, but not in astrocytes and oligodendrocytes. Terminal deoxynucleotidyl transferase-mediated biotinylated-dUTP nick-end labeling staining suggested the involvement of HtrA2 in neuronal apoptosis after ICH. Additionally, HtrA2 co-localized with active-caspase-3 around the hematoma and the expression of active-caspase-3 was parallel with that of HtrA2 in a time-dependent manner. Furthermore, hemin was used to stimulus a neuronal cell line PC12 to mimic ICH model in vitro. We analyzed the relationship of HtrA2 with X-linked inhibitor of apoptosis protein (XIAP) in PC12 cells by Western blot, immunofluorescence and co-immunoprecipitation. The connection of HtrA2 with XIAP was strengthened in apoptotic cells after hemin treatment. Thus, we speculated that HtrA2 might exert an important function in regulating caspase-dependent neuronal apoptosis through interacting with XIAP following ICH.


Journal of Molecular Neuroscience | 2015

CDK5 Contributes to Neuronal Apoptosis via Promoting MEF2D Phosphorylation in Rat Model of Intracerebral Hemorrhage

Kaifu Ke; Jiabing Shen; Yan Song; Maohong Cao; Hongjian Lu; Chun Liu; Jianhong Shen; Aihong Li; Jie Huang; Haidan Ni; Xiaomei Chen; Yonghua Liu

Cyclin-dependent kinase-5 (CDK5), a serine/threonine kinase which can be activated by its neuron-specific activator p35, or its truncated form p25, plays an important role in a variety of neuronal events, including neuronal migration, synaptic transmission, and neuronal death. Accumulating evidence has shown that abnormal activation of CDK5 was a critical neuronal pro-death signal in central nervous system (CNS) diseases. However, it remains unclear how CDK5 functions upon neuronal apoptosis following intracerebral hemorrhage (ICH). In the present study, we established ICH models by injecting autologous whole blood into the right basal ganglia of adult rats and assessed their neurological deficits by behavioral tests. CDK5 protein levels and kinase activities were upregulated adjacent to the hematoma following ICH. Immunofluorescent staining showed CDK5 was mainly localized in neurons, rather than in astrocytes or oligodendrocytes. Furthermore, active caspase-3, an apoptotic marker, showed a temporally parallel expression with the protein levels/kinase activities of CDK5 following ICH. Meantime, myocyte enhancer factor 2D (MEF2D), a pro-survival transcription factor which could be phosphorylated inactivation by CDK5, also exhibited high phosphorylation levels following ICH. In vitro, we obtained a consistent upregulation of CDK5 kinase activity in primary cortical neurons after thrombin treatment. Knocking down CDK5 kinase activity suppressed neuronal apoptosis and coupled with reduced MEF2D phosphorylation at ser444 residues. Thus, we speculated that CDK5 might exert an important function in the regulation of neuronal apoptosis following ICH.


Neurochemical Research | 2013

The Role of HSPA12B in Regulating Neuronal Apoptosis

Lihua Kang; Guowei Zhang; Yaohua Yan; Kaifu Ke; Xinmin Wu; Yilu Gao; Jing Li; Lin Zhu; Qiyun Wu; Zhengming Zhou

Heat shock protein A12B (HSPA12B) is the newest member of a recently defined subfamily of proteins distantly related to the 70-kDa family of heat shock proteins (HSP70) family. HSP70s play a crucial role in protecting cells, tissues, organs and animals from various noxious conditions. Here we studied the dynamic expression changes and localization of HSPA12B after middle cerebral artery occlusion (MCAO) with reperfusion induced ischemic insult processes in adult rats. Apoptosis, as indicated by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining, was also increased in the peri-ischemic cortex compared to non-ischemic hemisphere. The expression of HSPA12B was strongly induced in the ischemic hemisphere of MCAO reperfusion rats in vivo. In vitro studies indicated that the up-regulation of HSPA12B may be involved in oxygen-glucose deprivation-induced PC12 cell death. And knockdown of HSPA12B in cultured differentiated PC12 cells by siRNA showed that HSPA12B inhibited the expression of active caspase-3. Collectively, these results suggested that HSPA12B may be required for protecting neurons from ischemic insults.


Scientific Reports | 2015

Antidepressant-like effects of auraptenol in mice

Xiaosu Gu; Yong Zhou; Xiaomei Wu; Fen Wang; Cai-Yi Zhang; Chenchen Du; Lihua Shen; Xiang Chen; Jiansheng Shi; Chun-Feng Liu; Kaifu Ke

Depression is a major psychiatric disorder affecting nearly 21% of the world population and imposes a substantial health burden on society. Current available antidepressants are not adequate to meet the clinical needs. Here we report that auraptenol, an active component of the traditional Chinese medicine, angelicae dahuricae radix, had antidepressant-like effects in mice models of depression. In mouse forced swimming test and tail suspension test, two validated models of depression, auraptenol dose-dependently decreased the immobility duration within the dose range of 0.05–0.4 mg/kg. In addition, the antidepressant-like effects of auraptenol was significantly averted by a selective serotonin 5-HT1A receptor antagonist WAY100635 (1 mg/kg). These doses that affected the immobile response did not affect locomotor activity. In summary, this study for the first time identified an active component from the herbal medicine angelicae dahuricae radix that possesses robust antidepressant-like efficacy in mice. These data support further exploration for the possibility of developing auraptenol as a novel antidepressant agent in the treatment of major depression disorders.


Neuroscience | 2014

Involvement of ERK1/2 pathway in neuroprotective effects of pyrroloquinoline quinine against rotenone-induced SH-SY5Y cell injury.

Qi Zhang; Jingjing Zhang; C. Jiang; Jiaojiao Qin; Kaifu Ke; Fei Ding

Pyrroloquinoline quinone (PQQ), a redox cofactor in the mitochondrial respiratory chain, has been shown to protect neurons against glutamate-induced damage both in vitro and in vivo. In this study, specific inhibitors to each of the mitochondrial complexes were used to find out which reactive oxygen species (ROS)-generating sites could be affected by PQQ. Then we established an in vitro model of Parkinsons disease (PD) by exposing cultured SH-SY5Y dopaminergic cells to rotenone, a complex I inhibitor. The neuroprotective effects of PQQ were observed by pretreatment of SH-SY5Y cells with PQQ before rotenone injury, and the possible involvement of certain signaling pathways were investigated. PQQ pretreatment prevented SH-SY5Y cells from rotenone-induced apoptosis in a concentration-dependent manner. PQQ neuroprotection was associated with inhibition of intracellular ROS production, modulation of the expression of apoptosis-related Bcl-2 and Bax, and regulation of the level of superoxide dismutase, glutathione, and malondialdehyde. Meanwhile, PQQ up-regulated the gene expression of Ndufs 1, 2, and 4 (complex I subunits), and increased mitochondrial viability and mitochondrial DNA content. Furthermore, PQQ pretreatment activated ERK1/2 phosphorylation in rotenone-injured SH-SY5Y cells, while ERK1/2 inhibition suppressed PQQ neuroprotection. All the results suggested that PQQ could protect SH-SY5Y cells against rotenone injury by reducing ROS production and maintaining mitochondrial functions through activation of ERK1/2 pathway.

Collaboration


Dive into the Kaifu Ke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiang Tan

China Three Gorges University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gang Cui

Soochow University (Taiwan)

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge