Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiang Tan is active.

Publication


Featured researches published by Xiang Tan.


Cellular and Molecular Neurobiology | 2013

Up-regulation of NFATc4 Involves in Neuronal Apoptosis Following Intracerebral Hemorrhage

Lei Li; Kaifu Ke; Xiang Tan; Wei Xu; Jiabing Shen; Tingting Zhai; Ling Xu; Ying Rui; Heyi Zheng; Peipei Zhai; Jianghua Zhao; Maohong Cao

Nuclear factor of activated T-cells, cytoplasmic 4 (NFATc4), a transcriptional factor, is involved in the control about the flow of genetic information and the modulation of diverse cellular activities. Accumulating evidence has demonstrated that NFATc4 exerted a pro-apoptotic effect in multiple diseases. Here, we explored the NFATc4’s roles during the pathophysiological processes of intracerebral hemorrhage (ICH). An ICH rat model was built and evaluated according to behavioral testing. Using Western blot, immunohistochemistry, and immunofluorescence, significant up-regulation of NFATc4 was found in neurons in brain areas surrounding the hematoma following ICH. Increasing NFATc4 expression was found to be accompanied by the up-regulation of Fas ligand (FasL), active caspase-8, and active caspase-3, respectively. Besides, NFATc4 co-localized with active caspase-3 in neurons, indicating its role in neuronal apoptosis. Our in vitro study, using NFATc4 RNA interference in PC12 cells, further confirmed that NFATc4 might exert its pro-apoptotic function in neuronal apoptosis through extrinsic pathway. Thus, NFATc4 may play a role in promoting the brain secondary damage following ICH.


Journal of Molecular Neuroscience | 2013

Increased Expression of Small Heat Shock Protein αB-crystallin After Intracerebral Hemorrhage in Adult Rats

Kaifu Ke; Lei Li; Ying Rui; Heyi Zheng; Xiang Tan; Wei Xu; Jianhua Cao; Jian Xu; Gang Cui; Guangfei Xu; Maohong Cao

AbstractαB-crystallin (αBC) is involved in diverse cellular activities. Previous studies demonstrated that αBC had anti-apoptotic and proliferation-promoting effects in multiple diseases. Here, we explored the αBC’s roles in the pathophysiology of intracerebral hemorrhage (ICH). An ICH rat model was established and assessed by behavioral tests. Using Western blot and immunohistochemistry, significant up-regulation of αBC was found in neurons and astrocytes in brain areas surrounding the hematoma following ICH. Increase of αBC expression was found to be accompanied by the increased expression of proliferating cell nuclear antigen (PCNA), p53, Bax, and active-caspase-3. αBC was co-localized with PCNA in astrocytes or active-caspase-3 in neurons, suggesting its role in astrocyte proliferation and neuronal apoptosis. Our in vitro study, using αBC RNA interference in PC12 cells, indicated that αBC might exert its anti-apoptotic function in neuronal apoptosis. Thus, αBC may play a role in protecting the brain from secondary damage following ICH.


Neurochemistry International | 2013

Upregulation of Ras homolog enriched in the brain (Rheb) in lipopolysaccharide-induced neuroinflammation.

Maohong Cao; Xiang Tan; Wei Jin; Heyi Zheng; Wei Xu; Ying Rui; Lei Li; Jianhua Cao; Xiaohong Wu; Gang Cui; Kaifu Ke; Yilu Gao

Ras homolog enriched in the brain (Rheb) is a homolog of Ras GTPase that regulates cell growth, proliferation, and cell cycle via mammalian target of rapamycin (mTOR). Recently, it has been confirmed that Rheb activation not only promotes cellular proliferation and differentiation but also enhances cellular apoptosis in response to diverse toxic stimuli. However, the function of Rheb in the central nervous system (CNS) is still with limited understanding. To elaborate whether Rheb was involved in CNS injury, we performed a neuroinflammatory model by lipopolysaccharide (LPS) lateral ventral injection in adult rats. Upregulation of Rheb was observed in the brain cortex by performing western blotting and immunohistochemistry. Double immunofluorescent staining demonstrated that Rheb was mainly in active astrocytes and neurons. PCNA and active caspase-3 were upregulated, and co-labeling with Rheb, which indicated that Rheb might be relevant to astrocytic proliferation and neuronal apoptosis following the inflammatory response by LPS-induced. Furthermore, we also found that the expression profiles of cyclinD1 and CDK4 were parallel with that of Rheb in a time-space dependent manner. Finally, knocking down Rheb by siRNA and treatment with rapamycin or lovastatin showed that not only astrocytic proliferation decreased but also neuronal protection. Based on our data, we suggested that Rheb might play an important role in physiological and pathological functions following neuroinflammation caused by LPS, which might provide a potential target to the treatment of neuroinflammation.


Journal of Molecular Histology | 2013

The member of high temperature requirement family HtrA2 participates in neuronal apoptosis after intracerebral hemorrhage in adult rats

Huiqing Sun; Lei Li; Feng Zhou; Lin Zhu; Kaifu Ke; Xiang Tan; Wei Xu; Ying Rui; Heyi Zheng; Zhengming Zhou; Huiguang Yang

The members of high-temperature requirement (HtrA) family are evolutionarily conserved serine proteases that combine a trypsin-like protease domain with at least one PDZ interaction domain. HtrA2, a special one, is mainly located in mitochondria and required for maintaining homeostasis. Once released into cytoplasm, HtrA2 contributes to apoptosis via caspase-dependent and -independent pathways. Accumulating evidence has showed its pro-apoptotic effect in cancers and central nervous system (CNS) diseases. However, the distribution and function of HtrA2 in CNS diseases remains to be further explored. To investigate HtrA2’s roles in the pathophysiology of intracerebral hemorrhage (ICH), an ICH rat model was established and assessed by behavioral tests. Western blot and immunohistochemistry revealed a remarkable up-regulation of HtrA2 surrounding the hematoma after ICH; and immunofluorescence showed HtrA2 was strikingly increased in neurons, but not in astrocytes and oligodendrocytes. Terminal deoxynucleotidyl transferase-mediated biotinylated-dUTP nick-end labeling staining suggested the involvement of HtrA2 in neuronal apoptosis after ICH. Additionally, HtrA2 co-localized with active-caspase-3 around the hematoma and the expression of active-caspase-3 was parallel with that of HtrA2 in a time-dependent manner. Furthermore, hemin was used to stimulus a neuronal cell line PC12 to mimic ICH model in vitro. We analyzed the relationship of HtrA2 with X-linked inhibitor of apoptosis protein (XIAP) in PC12 cells by Western blot, immunofluorescence and co-immunoprecipitation. The connection of HtrA2 with XIAP was strengthened in apoptotic cells after hemin treatment. Thus, we speculated that HtrA2 might exert an important function in regulating caspase-dependent neuronal apoptosis through interacting with XIAP following ICH.


Journal of Neuroscience Research | 2014

Upregulation of SYF2 is associated with neuronal apoptosis caused by reactive astrogliosis to neuroinflammation

Wei Xu; Maohong Cao; Heyi Zheng; Xiang Tan; Lei Li; Gang Cui; Jian Xu; Jianhua Cao; Kaifu Ke; Qiyun Wu

SYF2, known as CCNDBP1‐interactor or p29, is likely involved in pre‐mRNA splicing and cell cycle progression. The present study was designed to elucidate dynamic changes in SYF2 expression and distribution in the cerebral cortex in a lipopolysaccharide (LPS)‐induced neuroinflammation rat model. It was found that SYF2 expression was induced strongly in active astrocytes after LPS injection. In vitro studies showed that the upregulation of SYF2 might be involved in the activation of C6 cells after LPS challenge and the neuronal apoptosis after conditioned media challenge. In addition, with silencing of SYF2 in C6 and PC12 cells by siRNA, the results indicated that SYF2 was required for astrocyte activation and neuronal apoptosis induced by LPS. Our findings on the cellular signaling pathway may provide a new therapeutic strategy against neuroinflammation in the CNS.


Journal of Molecular Neuroscience | 2013

Wip1 phosphatase involved in lipopolysaccharide-induced neuroinflammation.

Xiang Tan; Jingjing Zhang; Wei Jin; Lei Li; Wei Xu; Heyi Zheng; Ying Rui; Kaifu Ke; Ranran Zhou; Maohong Cao; Yongjin Pan

Wild type p53-induced phosphatase 1 (Wip1) is a phosphatase which belongs to protein phosphatase type 2C family, which have been predominantly linked to cell growth and to cellular stress signaling. Numerous downstream targets of Wip1 have been identified, and genetic studies confirm that some play a part in tumorigenesis. Recent evidence highlights a new role for Wip1 in the regulation of NF-κB p65, which indicated that it might play a critical role in immune system. However, its regulation role in central nervous system (CNS) remains poorly understood. To elaborate whether Wip1 was involved in CNS injury, we performed a neuroinflammatory model by lipopolysaccharide (LPS) lateral–ventral injection in adult rats. Wip1 expression was strongly upregulated in active astrocytes in inflamed brain cortex. In vitro studies indicated that the upregulation of Wip1 may be involved in the subsequent astrocytic activation following LPS exposure, and knockdown of Wip1 in primary astrocytes by siRNA showed that Wip1 inhibited the synthesis of TNF-α. Collectively, these results suggested that Wip1 may be important in host defense in CNS immune response, which might provide a potent therapeutic target of neuroinflammation.


Journal of Molecular Neuroscience | 2014

Upregulation of EHD2 after Intracerebral Hemorrhage in Adult Rats

Kaifu Ke; Ying Rui; Lei Li; Heyi Zheng; Wei Xu; Xiang Tan; Jianhua Cao; Xiaoyan Wu; Gang Cui; Maohong Cao

EHD2, a member of the Eps15 homology domain (EH domain) family, is important for protein interactions during vesicular trafficking. Previous studies have proved that EHD2 can regulate trafficking from the plasma membrane in the process of endocytosis. However, its function in central nervous system diseases is still with limited understanding. In this frame, we found that EHD2 expression was upregulated in the perihematomal caudate in adult rats after intracerebral hemorrhage (ICH). Double immunofluorescence staining revealed that EHD2 was colocalized with neurons and activated microglias after ICH. Besides, we detected that neuronal apoptosis markers (TUNEL and caspase-3), and microglial activation marker (CD68), also known as a marker of macrophage, were colocated with EHD2. The vitro study also indicated that EHD2 was linked with neuronal apoptosis and microglial phagocytosis. All our findings suggested that EHD2 might be involved in the pathophysiology of ICH.


Journal of Molecular Histology | 2013

Involvement of early growth response-2 (Egr-2) in lipopolysaccharide-induced neuroinflammation.

Yaohua Yan; Xiang Tan; Xinmin Wu; Bai Shao; Xiaohong Wu; Jianhua Cao; Jian Xu; Wei Jin; Lei Li; Wei Xu; Xijun Wang; Yilu Gao; Gang Cui

Early growth response-2 (Egr-2) protein is a transcription factor, which belongs to Egr family which involve in modulating the peripheral immune response, by means of the induction of differentiation of lymphocyte precursors, activation of T and B cells. Egr-2 plays essential roles in peripheral nerve myelination, adipogenesis, tissue repair and fibrosis, immune tolerance; however, its regulation and role in central nervous system (CNS) remain poorly understood. In contrast to Egr-1, which has been extensively investigated, the regulation and function of Egr-2 remains less well characterized. To elaborate whether Egr-2 was involved in CNS injury, we performed a neuroinflammatory model by lipopolysaccharide (LPS) lateral ventral injection in adult rats. Egr-2 expression was strongly induced in active glia cells (astrocytes and microglias) in inflamed brain cortex. In vitro studies indicated that the upregulation of Egr-2 may be involved in the subsequent glia cellular activation following LPS exposure; and knock down of Egr-2 in primary mixed glial cultures (MGC) by siRNA showed that Egr-2 promoted the synthesis of TNF-α. Collectively, these results suggested Egr-2 may be important in host defense in CNS immune response, which might provide a potential target to the treatment of neuroinflammation.


Journal of Molecular Histology | 2013

Upregulation of CBLL1 in rat brain cortex after lipopolysaccharide treated.

Maohong Cao; Heyi Zheng; Xiang Tan; Wei Xu; Ying Rui; Lei Li; Xiaofei Liu; Guangfei Xu; Gang Cui; Jian Xu; Jianhua Cao; Kaifu Ke; Qiyun Wu

CBLL1 (Casitas B-lineage lymphoma-transforming sequence-like protein 1) also known as Hakai, was originally identified as an E3 ubiquitin-ligase for the E-cadherin complex. Recent data have provided evidences for novel biological functional role of CBLL1 during tumor progression and other diseases. However, its distribution and function in the central nervous system (CNS) remains unclear. In this study, we found CBLL1 was significant up-regulation in cerebral cortex after LPS administration and immunofluorescent labeling indicated that CBLL1 was localized striking in the neurons. We also investigated co-staining of CBLL1 and active-caspase-3 and cyclin D1 in the cerebral cortex following LPS administration. Based on our data, we speculated that CBLL1 might play an important role in neuronal apoptosis following LPS administration and might provide a basis for the further study on its role in cell cycle re-entry in neuroinflammation in CNS.


Journal of Molecular Histology | 2013

Up-regulated expression of Bnip3L after intracerebral hemorrhage in adult rats

Ying Rui; Kaifu Ke; Lei Li; Heyi Zheng; Wei Xu; Xiang Tan; Jianhua Cao; Xiaoyan Wu; Gang Cui; Guangwei Zhao; Yilu Gao; Maohong Cao

Bnip3L, also known as NIX, is a homolog of the E1B 19K/Bcl-2 binding and pro-apoptotic protein Bnip3 which can bind to Bcl-2 to elaborate that effect. In tumor cells, Bnip3L played a role in tumor growth inhibition, but some studies argued hypoxia-induced autophagy via Bnip3L was a survival mechanism that promoted tumor progression. In heart muscle, it related to decreased myocardial function. However, its function in intracerebral hemorrhage (ICH) is still not clear. In this frame, we found the Bnip3L expression increased in the perihematomal region in adult rats after performed ICH. Double immunofluorenscence staining manifested that Bnip3L co-located with neurons, not astrocytes or oligodendrocytes. Furthermore, we detected that neuronal apoptosis marker active caspase-3 had colocalizations with Bnip3L. In addition, colocalizations and co-immunoprecipitation between Bnip3L and Bcl-2, consistent with previous study, were also found. All our findings suggested that Bnip3L might be involved in the pathophysiology of ICH.

Collaboration


Dive into the Xiang Tan's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge