Kaisa Kajala
University of California, Davis
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kaisa Kajala.
Plant Physiology | 2011
Andrea Bräutigam; Kaisa Kajala; Julia Wullenweber; Manuel Sommer; David Gagneul; Katrin L. Weber; Kevin M. Carr; Udo Gowik; Janina Mass; Martin J. Lercher; Peter Westhoff; Julian M. Hibberd; Andreas P. M. Weber
C4 photosynthesis involves alterations to the biochemistry, cell biology, and development of leaves. Together, these modifications increase the efficiency of photosynthesis, and despite the apparent complexity of the pathway, it has evolved at least 45 times independently within the angiosperms. To provide insight into the extent to which gene expression is altered between C3 and C4 leaves, and to identify candidates associated with the C4 pathway, we used massively parallel mRNA sequencing of closely related C3 (Cleome spinosa) and C4 (Cleome gynandra) species. Gene annotation was facilitated by the phylogenetic proximity of Cleome and Arabidopsis (Arabidopsis thaliana). Up to 603 transcripts differ in abundance between these C3 and C4 leaves. These include 17 transcription factors, putative transport proteins, as well as genes that in Arabidopsis are implicated in chloroplast movement and expansion, plasmodesmatal connectivity, and cell wall modification. These are all characteristics known to alter in a C4 leaf but that previously had remained undefined at the molecular level. We also document large shifts in overall transcription profiles for selected functional classes. Our approach defines the extent to which transcript abundance in these C3 and C4 leaves differs, provides a blueprint for the NAD-malic enzyme C4 pathway operating in a dicotyledon, and furthermore identifies potential regulators. We anticipate that comparative transcriptomics of closely related species will provide deep insight into the evolution of other complex traits.
Plant Physiology | 2014
Mily Ron; Kaisa Kajala; Germain Pauluzzi; Dongxue Wang; Mauricio A. Reynoso; Kristina Zumstein; Jasmine Garcha; Sonja Winte; Helen Masson; Soichi Inagaki; Fernán Federici; Neelima Sinha; Roger B. Deal; Julia Bailey-Serres; Siobhan M. Brady
Testing tomato gene expression with tagged nuclei and ribosomes and CRISPR/Cas9 genome editing shows conservation of SHORT-ROOT gene function. Agrobacterium rhizogenes (or Rhizobium rhizogenes) is able to transform plant genomes and induce the production of hairy roots. We describe the use of A. rhizogenes in tomato (Solanum spp.) to rapidly assess gene expression and function. Gene expression of reporters is indistinguishable in plants transformed by Agrobacterium tumefaciens as compared with A. rhizogenes. A root cell type- and tissue-specific promoter resource has been generated for domesticated and wild tomato (Solanum lycopersicum and Solanum pennellii, respectively) using these approaches. Imaging of tomato roots using A. rhizogenes coupled with laser scanning confocal microscopy is facilitated by the use of a membrane-tagged protein fused to a red fluorescent protein marker present in binary vectors. Tomato-optimized isolation of nuclei tagged in specific cell types and translating ribosome affinity purification binary vectors were generated and used to monitor associated messenger RNA abundance or chromatin modification. Finally, transcriptional reporters, translational reporters, and clustered regularly interspaced short palindromic repeats-associated nuclease9 genome editing demonstrate that SHORT-ROOT and SCARECROW gene function is conserved between Arabidopsis (Arabidopsis thaliana) and tomato.
Journal of Experimental Botany | 2011
Kaisa Kajala; Sarah Covshoff; Shanta Karki; Helen Woodfield; Ben J. Tolley; Mary Jaqueline A. Dionora; Reychelle Mogul; Abigail Mabilangan; Florence R. Danila; Julian M. Hibberd; William Paul Quick
Every day almost one billion people suffer from chronic hunger, and the situation is expected to deteriorate with a projected population growth to 9 billion worldwide by 2050. In order to provide adequate nutrition into the future, rice yields in Asia need to increase by 60%, a change that may be achieved by introduction of the C(4) photosynthetic cycle into rice. The international C(4) Rice Consortium was founded in order to test the feasibility of installing the C(4) engine into rice. This review provides an update on two of the many approaches employed by the C(4) Rice Consortium: namely, metabolic C(4) engineering and identification of determinants of leaf anatomy by mutant screens. The aim of the metabolic C(4) engineering approach is to generate a two-celled C(4) shuttle in rice by expressing the classical enzymes of the NADP-ME C(4) cycle in a cell-appropriate manner. The aim is also to restrict RuBisCO and glycine decarboxylase expression to the bundle sheath (BS) cells of rice in a C(4)-like fashion by specifically down-regulating their expression in rice mesophyll (M) cells. In addition to the changes in biochemistry, two-celled C(4) species show a convergence in leaf anatomy that include increased vein density and reduced numbers of M cells between veins. By screening rice activation-tagged lines and loss-of-function sorghum mutants we endeavour to identify genes controlling these key traits.
Science | 2011
Naomi J. Brown; Christine A. Newell; Susan Stanley; Jit Ern Chen; Abigail J. Perrin; Kaisa Kajala; Julian M. Hibberd
Recurrent evolution of C4 photosynthesis is due to conserved regulatory sequences that localize photosynthetic enzymes. C4 photosynthesis allows increased photosynthetic efficiency because carbon dioxide (CO2) is concentrated around the key enzyme RuBisCO. Leaves of C4 plants exhibit modified biochemistry, cell biology, and leaf development, but despite this complexity, C4 photosynthesis has evolved independently in at least 45 lineages of plants. We found that two independent lineages of C4 plant, whose last common ancestor predates the divergence of monocotyledons and dicotyledons about 180 million years ago, show conserved mechanisms controlling the expression of genes important for release of CO2 around RuBisCO in bundle sheath (BS) cells. Orthologous genes from monocotyledonous and dicotyledonous C3 species also contained conserved regulatory elements that conferred BS specificity when placed into C4 species. We conclude that these conserved functional genetic elements likely facilitated the repeated evolution of C4 photosynthesis.
The Plant Cell | 2017
Kelsey A. Maher; Marko Bajic; Kaisa Kajala; Mauricio A. Reynoso; Germain Pauluzzi; Donnelly West; Kristina Zumstein; Margaret Woodhouse; Kerry L. Bubb; Michael W Dorrity; Christine Queitsch; Julia Bailey-Serres; Neelima Sinha; Siobhan M. Brady; Roger B. Deal
A comparison of open chromatin landscapes reveals commonalities in transcriptional regulation across species and identifies a transcription factor cascade in the Arabidopsis root hair. The transcriptional regulatory structure of plant genomes remains poorly defined relative to animals. It is unclear how many cis-regulatory elements exist, where these elements lie relative to promoters, and how these features are conserved across plant species. We employed the assay for transposase-accessible chromatin (ATAC-seq) in four plant species (Arabidopsis thaliana, Medicago truncatula, Solanum lycopersicum, and Oryza sativa) to delineate open chromatin regions and transcription factor (TF) binding sites across each genome. Despite 10-fold variation in intergenic space among species, the majority of open chromatin regions lie within 3 kb upstream of a transcription start site in all species. We find a common set of four TFs that appear to regulate conserved gene sets in the root tips of all four species, suggesting that TF-gene networks are generally conserved. Comparative ATAC-seq profiling of Arabidopsis root hair and non-hair cell types revealed extensive similarity as well as many cell-type-specific differences. Analyzing TF binding sites in differentially accessible regions identified a MYB-driven regulatory module unique to the hair cell, which appears to control both cell fate regulators and abiotic stress responses. Our analyses revealed common regulatory principles among species and shed light on the mechanisms producing cell-type-specific transcriptomes during development.
Plant Physiology | 2018
Mauricio A. Reynoso; Germain Pauluzzi; Kaisa Kajala; Sean Cabanlit; Joel Velasco; Jérémie Bazin; Roger B. Deal; Neelima Sinha; Siobhan M. Brady; Julia Bailey-Serres
Improved technology and methodology for affinity purification of nuclei and analysis of nuclear transcriptomes, chromatin, and other nuclear components. Isolated nuclei provide access to early steps in gene regulation involving chromatin as well as transcript production and processing. Here, we describe transfer of the isolation of nuclei from tagged specific cell types (INTACT) to the monocot rice (Oryza sativa L.). The purification of biotinylated nuclei was redesigned by replacing the outer nuclear-envelope-targeting domain of the nuclear tagging fusion (NTF) protein with an outer nuclear-envelope-anchored domain. This modified NTF was combined with codon-optimized Escherichia coli BirA in a single T-DNA construct. We also developed inexpensive methods for INTACT, T-DNA insertion mapping, and profiling of the complete nuclear transcriptome, including a ribosomal RNA degradation procedure that minimizes pre-ribosomal RNA (pre-rRNA) transcripts. A high-resolution comparison of nuclear and steady-state poly(A)+ transcript populations of seedling root tips confirmed the capture of pre-messenger RNA (pre-mRNA) and exposed distinctions in diversity and abundance of the nuclear and total transcriptomes. This retooled INTACT can enable high-resolution monitoring of the nuclear transcriptome and chromatin in specific cell types of rice and other species.
New Phytologist | 2017
Gina Turco; Kaisa Kajala; Govindarajan Kunde-Ramamoorthy; Chew-Yee Ngan; Andrew Olson; Shweta Deshphande; Denis Tolkunov; Barbara Waring; Scott Stelpflug; Patricia E. Klein; Jeremy Schmutz; Shawn M. Kaeppler; Doreen Ware; Chia-Lin Wei; J. Peter Etchells; Siobhan M. Brady
Summary Plant secondary cell walls constitute the majority of plant biomass. They are predominantly found in xylem cells, which are derived from vascular initials during vascularization. Little is known about these processes in grass species despite their emerging importance as biomass feedstocks. The targeted biofuel crop Sorghum bicolor has a sequenced and well‐annotated genome, making it an ideal monocot model for addressing vascularization and biomass deposition. Here we generated tissue‐specific transcriptome and DNA methylome data from sorghum shoots, roots and developing root vascular and nonvascular tissues. Many genes associated with vascular development in other species show enriched expression in developing vasculature. However, several transcription factor families varied in vascular expression in sorghum compared with Arabidopsis and maize. Furthermore, differential expression of genes associated with DNA methylation were identified between vascular and nonvascular tissues, implying that changes in DNA methylation are a feature of sorghum root vascularization, which we confirmed using tissue‐specific DNA methylome data. Roots treated with a DNA methylation inhibitor also showed a significant decrease in root length. Tissues and organs can be discriminated based on their genomic methylation patterns and methylation context. Consequently, tissue‐specific changes in DNA methylation are part of the normal developmental process.
Genome Announcements | 2014
Kaisa Kajala; David A. Coil; Siobhan M. Brady
ABSTRACT Here, we present the draft genome of Rhizobium rhizogenes strain ATCC 15834. The genome contains 7,070,307 bp in 43 scaffolds. R. rhizogenes, also known as Agrobacterium rhizogenes, is a plant pathogen that causes hairy root disease. This hairy root induction has been used in biotechnology for the generation of transgenic root cultures.
G3: Genes, Genomes, Genetics | 2018
Ted Toal; Mily Ron; Donald Gibson; Kaisa Kajala; Bessie L. Splitt; Logan S. Johnson; Nathan D. Miller; Radka Slovak; Allison Gaudinier; Rohan V. Patel; Miguel de Lucas; Nicholas J. Provart; Edgar P. Spalding; Wolfgang Busch; Daniel J. Kliebenstein; Siobhan M. Brady
Regulation of plant root angle is critical for obtaining nutrients and water and is an important trait for plant breeding. A plant’s final, long-term root angle is the net result of a complex series of decisions made by a root tip in response to changes in nutrient availability, impediments, the gravity vector and other stimuli. When a root tip is displaced from the gravity vector, the short-term process of gravitropism results in rapid reorientation of the root toward the vertical. Here, we explore both short- and long-term regulation of root growth angle, using natural variation in tomato to identify shared and separate genetic features of the two responses. Mapping of expression quantitative trait loci mapping and leveraging natural variation between and within species including Arabidopsis suggest a role for PURPLE ACID PHOSPHATASE 27 and CELL DIVISION CYCLE 73 in determining root angle.
Plant Journal | 2012
Kaisa Kajala; Naomi J. Brown; Ben P. Williams; Philippa Borrill; Lucy Taylor; Julian M. Hibberd