Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kaitlyn A. Webster is active.

Publication


Featured researches published by Kaitlyn A. Webster.


Cell | 2011

In Vivo Identification of Tumor- Suppressive PTEN ceRNAs in an Oncogenic BRAF-Induced Mouse Model of Melanoma

Florian A. Karreth; Yvonne Tay; Daniele Perna; Ugo Ala; Shen Mynn Tan; Alistair G. Rust; Gina DeNicola; Kaitlyn A. Webster; Dror Weiss; Pedro A. Pérez-Mancera; Michael Krauthammer; Ruth Halaban; Paolo Provero; David J. Adams; David A. Tuveson; Pier Paolo Pandolfi

Summary We recently proposed that competitive endogenous RNAs (ceRNAs) sequester microRNAs to regulate mRNA transcripts containing common microRNA recognition elements (MREs). However, the functional role of ceRNAs in cancer remains unknown. Loss of PTEN, a tumor suppressor regulated by ceRNA activity, frequently occurs in melanoma. Here, we report the discovery of significant enrichment of putative PTEN ceRNAs among genes whose loss accelerates tumorigenesis following Sleeping Beauty insertional mutagenesis in a mouse model of melanoma. We validated several putative PTEN ceRNAs and further characterized one, the ZEB2 transcript. We show that ZEB2 modulates PTEN protein levels in a microRNA-dependent, protein coding-independent manner. Attenuation of ZEB2 expression activates the PI3K/AKT pathway, enhances cell transformation, and commonly occurs in human melanomas and other cancers expressing low PTEN levels. Our study genetically identifies multiple putative microRNA decoys for PTEN, validates ZEB2 mRNA as a bona fide PTEN ceRNA, and demonstrates that abrogated ZEB2 expression cooperates with BRAF V600E to promote melanomagenesis.We recently proposed that competitive endogenous RNAs (ceRNAs) sequester microRNAs to regulate mRNA transcripts containing common microRNA recognition elements (MREs). However, the functional role of ceRNAs in cancer remains unknown. Loss of PTEN, a tumor suppressor regulated by ceRNA activity, frequently occurs in melanoma. Here, we report the discovery of significant enrichment of putative PTEN ceRNAs among genes whose loss accelerates tumorigenesis following Sleeping Beauty insertional mutagenesis in a mouse model of melanoma. We validated several putative PTEN ceRNAs and further characterized one, the ZEB2 transcript. We show that ZEB2 modulates PTEN protein levels in a microRNA-dependent, protein coding-independent manner. Attenuation of ZEB2 expression activates the PI3K/AKT pathway, enhances cell transformation, and commonly occurs in human melanomas and other cancers expressing low PTEN levels. Our study genetically identifies multiple putative microRNA decoys for PTEN, validates ZEB2 mRNA as a bona fide PTEN ceRNA, and demonstrates that abrogated ZEB2 expression cooperates with BRAF(V600E) to promote melanomagenesis.


Cell Stem Cell | 2013

The Oncogenic MicroRNA miR-22 Targets the TET2 Tumor Suppressor to Promote Hematopoietic Stem Cell Self-Renewal and Transformation

Su Jung Song; Keisuke Ito; Ugo Ala; Lev Kats; Kaitlyn A. Webster; Su Ming Sun; Mojca Jongen-Lavrencic; Katia Manova-Todorova; Julie Teruya-Feldstein; David Avigan; Ruud Delwel; Pier Paolo Pandolfi

MicroRNAs are frequently deregulated in cancer. Here we show that miR-22 is upregulated in myelodysplastic syndrome (MDS) and leukemia and its aberrant expression correlates with poor survival. To explore its role in hematopoietic stem cell function and malignancy, we generated transgenic mice conditionally expressing miR-22 in the hematopoietic compartment. These mice displayed reduced levels of global 5-hydroxymethylcytosine (5-hmC) and increased hematopoietic stem cell self-renewal accompanied by defective differentiation. Conversely, miR-22 inhibition blocked proliferation in both mouse and human leukemic cells. Over time, miR-22 transgenic mice developed MDS and hematological malignancies. We also identify TET2 as a key target of miR-22 in this context. Ectopic expression of TET2 suppressed the miR-22-induced phenotypes. Downregulation of TET2 protein also correlated with poor clinical outcomes and miR-22 overexpression in MDS patients. Our results therefore identify miR-22 as a potent proto-oncogene and suggest that aberrations in the miR-22/TET2 regulatory network are common in hematopoietic malignancies.


Cell | 2014

Cancer-Associated PTEN Mutants Act in a Dominant-Negative Manner to Suppress PTEN Protein Function

Antonella Papa; Lixin Wan; Massimo Bonora; Leonardo Salmena; Minsup Song; Robin M. Hobbs; Andrea Lunardi; Kaitlyn A. Webster; Christopher Ng; Ryan H. Newton; Nicholas W. Knoblauch; Jlenia Guarnerio; Keisuke Ito; Laurence A. Turka; Andrew H. Beck; Paolo Pinton; Roderick T. Bronson; Wenyi Wei; Pier Paolo Pandolfi

PTEN dysfunction plays a crucial role in the pathogenesis of hereditary and sporadic cancers. Here, we show that PTEN homodimerizes and, in this active conformation, exerts lipid phosphatase activity on PtdIns(3,4,5)P3. We demonstrate that catalytically inactive cancer-associated PTEN mutants heterodimerize with wild-type PTEN and constrain its phosphatase activity in a dominant-negative manner. To study the consequences of homo- and heterodimerization of wild-type and mutant PTEN in vivo, we generated Pten knockin mice harboring two cancer-associated PTEN mutations (PtenC124S and PtenG129E). Heterozygous Pten(C124S/+) and Pten(G129E/+) cells and tissues exhibit increased sensitivity to PI3-K/Akt activation compared to wild-type and Pten(+/-) counterparts, whereas this difference is no longer apparent between Pten(C124S/-) and Pten(-/-) cells. Notably, Pten KI mice are more tumor prone and display features reminiscent of complete Pten loss. Our findings reveal that PTEN loss and PTEN mutations are not synonymous and define a working model for the function and regulation of PTEN.


Cell Stem Cell | 2012

Functional antagonism between Sall4 and Plzf defines germline progenitors.

Robin M. Hobbs; Sharmila Fagoonee; Antonella Papa; Kaitlyn A. Webster; Fiorella Altruda; Ryuichi Nishinakamura; Li Chai; Pier Paolo Pandolfi

Transcription factors required for formation of embryonic tissues often maintain their expression in adult stem cell populations, but whether their function remains equivalent is not clear. Here we demonstrate critical and distinct roles for Sall4 in development of embryonic germ cells and differentiation of postnatal spermatogonial progenitor cells (SPCs). In differentiating SPCs, Sall4 levels transiently increase and Sall4 physically interacts with Plzf, a transcription factor exclusively required for adult stem cell maintenance. Mechanistically, Sall4 sequesters Plzf to noncognate chromatin domains to induce expression of Kit, a target of Plzf-mediated repression required for differentiation. Plzf in turn antagonizes Sall4 function by displacing Sall4 from cognate chromatin to induce Sall1 expression. Taken together, these data suggest that transcription factors required for embryonic tissue development postnatally take on distinct roles through interaction with opposing factors, which hence define properties of the adult stem cell compartment.


Nature Genetics | 2013

A co-clinical approach identifies mechanisms and potential therapies for androgen deprivation resistance in prostate cancer

Andrea Lunardi; Ugo Ala; Mirjam T. Epping; Leonardo Salmena; John G. Clohessy; Kaitlyn A. Webster; Guocan Wang; Roberta Mazzucchelli; Maristella Bianconi; Edward C. Stack; Rosina T. Lis; Akash Patnaik; Lewis C. Cantley; Glenn J. Bubley; Carlos Cordon-Cardo; William L. Gerald; Rodolfo Montironi; Sabina Signoretti; Massimo Loda; Caterina Nardella; Pier Paolo Pandolfi

Here we report an integrated analysis that leverages data from treatment of genetic mouse models of prostate cancer along with clinical data from patients to elucidate new mechanisms of castration resistance. We show that castration counteracts tumor progression in a Pten loss–driven mouse model of prostate cancer through the induction of apoptosis and proliferation block. Conversely, this response is bypassed with deletion of either Trp53 or Zbtb7a together with Pten, leading to the development of castration-resistant prostate cancer (CRPC). Mechanistically, the integrated acquisition of data from mouse models and patients identifies the expression patterns of XAF1, XIAP and SRD5A1 as a predictive and actionable signature for CRPC. Notably, we show that combined inhibition of XIAP, SRD5A1 and AR pathways overcomes castration resistance. Thus, our co-clinical approach facilitates the stratification of patients and the development of tailored and innovative therapeutic treatments.


Cancer Research | 2010

Joint loss of PAX2 and PTEN expression in endometrial precancers and cancer.

Nicolas M. Monte; Kaitlyn A. Webster; Donna Neuberg; Gregory R. Dressler; George L. Mutter

Latent endometrial carcinoma precancers are normal-appearing endometrial glands with sporadic loss of tumor suppressor gene function such as PTEN. Progression to carcinoma is inefficient and requires additional genetic damage that creates a histologic precursor lesion called endometrial intraepithelial neoplasia (EIN). In this study, we examined loss of PAX2 expression, a gene required for embryonic uterine development, during endometrial carcinogenesis. Normal proliferative, EIN, and malignant (endometrial adenocarcinoma) endometrial tissues were immunostained for PTEN and PAX2. Proliferative samples with loss of protein in at least one gland were scored as latent precancers. EIN and cancer lesions were scored by the majority pattern. Overall prevalence and topography of joint PAX2-PTEN expression loss was examined. The prevalence of PAX2 protein loss in the sequence of normal to precancer to cancer was 36%, 71%, and 77%, respectively, and for PTEN, it was 49%, 44%, and 68%, respectively. The normal endometrial prevalence of PAX2- or PTEN-deficient latent precancers was unaffected by biopsy indication, but increased significantly with age. Coincident loss of PAX2 and PTEN expression in an individual normal endometrium was seen in 21% of patients, but usually involved different glands. Coincident loss was more common in precancers (31%) and carcinoma (55%), in which case, both markers were protein null in an overlapping clonal distribution. PAX2 and PTEN protein loss occurs independently and accumulates with increasing age in latent precancers of normal premenopausal endometrium. Loss of function of both genes in an overlapping distribution characterizes the clinical emergence of a premalignant lesion which is carried forward to carcinoma.


Nature Genetics | 2013

Zbtb7a suppresses prostate cancer through repression of a Sox9-dependent pathway for cellular senescence bypass and tumor invasion

Guocan Wang; Andrea Lunardi; Jiangwen Zhang; Zhenbang Chen; Ugo Ala; Kaitlyn A. Webster; Yvonne Tay; Enrique González-Billalabeitia; Ainara Egia; David R. Shaffer; Brett S. Carver; Xue-Song Liu; Riccardo Taulli; Winston Patrick Kuo; Caterina Nardella; Sabina Signoretti; Carlos Cordon-Cardo; William L. Gerald; Pier Paolo Pandolfi

Zbtb7a has previously been described as a powerful proto-oncogene. Here we unexpectedly demonstrate that Zbtb7a has a critical oncosuppressive role in the prostate. Prostate-specific inactivation of Zbtb7a leads to a marked acceleration of Pten loss–driven prostate tumorigenesis through bypass of Pten loss–induced cellular senescence (PICS). We show that ZBTB7A physically interacts with SOX9 and functionally antagonizes its transcriptional activity on key target genes such as MIA, which is involved in tumor cell invasion, and H19, a long noncoding RNA precursor for an RB-targeting microRNA. Inactivation of Zbtb7a in vivo leads to Rb downregulation, PICS bypass and invasive prostate cancer. Notably, we found that ZBTB7A is genetically lost, as well as downregulated at both the mRNA and protein levels, in a subset of human advanced prostate cancers. Thus, we identify ZBTB7A as a context-dependent cancer gene that can act as an oncogene in some contexts but also has oncosuppressive-like activity in PTEN-null tumors.


Cancer Discovery | 2014

Vulnerabilities of PTEN–TP53-Deficient Prostate Cancers to Compound PARP–PI3K Inhibition

Enrique González-Billalabeitia; Nina Seitzer; Su Jung Song; Min Sup Song; Akash Patnaik; Xue-Song Liu; Mirjam T. Epping; Antonella Papa; Robin M. Hobbs; Ming Chen; Andrea Lunardi; Christopher Ng; Kaitlyn A. Webster; Sabina Signoretti; Massimo Loda; John M. Asara; Caterina Nardella; John G. Clohessy; Lewis C. Cantley; Pier Paolo Pandolfi

UNLABELLED Prostate cancer is the most prevalent cancer in males, and treatment options are limited for advanced forms of the disease. Loss of the PTEN and TP53 tumor suppressor genes is commonly observed in prostate cancer, whereas their compound loss is often observed in advanced prostate cancer. Here, we show that PARP inhibition triggers a p53-dependent cellular senescence in a PTEN-deficient setting in the prostate. Surprisingly, we also find that PARP-induced cellular senescence is morphed into an apoptotic response upon compound loss of PTEN and p53. We further show that superactivation of the prosurvival PI3K-AKT signaling pathway limits the efficacy of a PARP single-agent treatment, and that PARP and PI3K inhibitors effectively synergize to suppress tumorigenesis in human prostate cancer cell lines and in a Pten/Trp53-deficient mouse model of advanced prostate cancer. Our findings, therefore, identify a combinatorial treatment with PARP and PI3K inhibitors as an effective option for PTEN-deficient prostate cancer. SIGNIFICANCE The paucity of therapeutic options in advanced prostate cancer displays an urgent need for the preclinical assessment of novel therapeutic strategies. We identified differential therapeutic vulnerabilities that emerge upon the loss of both PTEN and p53, and observed that combined inhibition of PARP and PI3K provides increased efficacy in hormone-insensitive advanced prostate cancer.


Nature Genetics | 2018

An aberrant SREBP-dependent lipogenic program promotes metastatic prostate cancer

Ming Chen; Jiangwen Zhang; Katia Sampieri; John G. Clohessy; Lourdes Mendez; Enrique González-Billalabeitia; Xue-Song Liu; Yu-Ru Lee; Jacqueline Fung; Jesse M. Katon; Archita Venugopal Menon; Kaitlyn A. Webster; Christopher Ng; Maria Dilia Palumbieri; Moussa Diolombi; Susanne B. Breitkopf; Julie Teruya-Feldstein; Sabina Signoretti; Roderick T. Bronson; John M. Asara; Mireia Castillo-Martin; Carlos Cordon-Cardo; Pier Paolo Pandolfi

Lipids, either endogenously synthesized or exogenous, have been linked to human cancer. Here we found that PML is frequently co-deleted with PTEN in metastatic human prostate cancer (CaP). We demonstrated that conditional inactivation of Pml in the mouse prostate morphs indolent Pten-null tumors into lethal metastatic disease. We identified MAPK reactivation, subsequent hyperactivation of an aberrant SREBP prometastatic lipogenic program, and a distinctive lipidomic profile as key characteristic features of metastatic Pml and Pten double-null CaP. Furthermore, targeting SREBP in vivo by fatostatin blocked both tumor growth and distant metastasis. Importantly, a high-fat diet (HFD) induced lipid accumulation in prostate tumors and was sufficient to drive metastasis in a nonmetastatic Pten-null mouse model of CaP, and an SREBP signature was highly enriched in metastatic human CaP. Thus, our findings uncover a prometastatic lipogenic program and lend direct genetic and experimental support to the notion that a Western HFD can promote metastasis.This study shows that inactivation of Pml in the mouse prostate turns indolent Pten-null tumors into lethal metastatic disease. The authors identify an aberrant SREBP prometastatic lipogenic program and show that a high-fat diet induces lipid accumulation in prostate tumors and is sufficient to drive metastasis.


Cell | 2013

microRNA-antagonism regulates breast cancer stemness and metastasis via TET family dependent chromatin remodeling

Su Jung Song; Laura Poliseno; Min Sup Song; Ugo Ala; Kaitlyn A. Webster; Christopher Ng; Gary Beringer; Nicolai J. Brikbak; Xin Yuan; Lewis C. Cantley; Andrea L. Richardson; Pier Paolo Pandolfi

Collaboration


Dive into the Kaitlyn A. Webster's collaboration.

Top Co-Authors

Avatar

Pier Paolo Pandolfi

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John G. Clohessy

Beth Israel Deaconess Medical Center

View shared research outputs
Top Co-Authors

Avatar

Sabina Signoretti

Brigham and Women's Hospital

View shared research outputs
Top Co-Authors

Avatar

Carlos Cordon-Cardo

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Enrique González-Billalabeitia

Beth Israel Deaconess Medical Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge