Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kaiwei Wang is active.

Publication


Featured researches published by Kaiwei Wang.


Journal of remote sensing | 2008

PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data

Deng Js; Kaiwei Wang; Y. H. Deng; G. J. Qi

Remote‐sensing change detection based on multitemporal, multispectral, and multisensor imagery has been developed over several decades and provided timely and comprehensive information for planning and decision‐making. In practice, however, it is still difficult to select a suitable change‐detection method, especially in urban areas, because of the impacts of complex factors. This paper presents a new method using multitemporal and multisensor data (SPOT‐5 and Landsat data) to detect land‐use changes in an urban environment based on principal‐component analysis (PCA) and hybrid classification methods. After geometric correction and radiometric normalization, PCA was used to enhance the change information from stacked multisensor data. Then, a hybrid classifier combining unsupervised and supervised classification was performed to identify and quantify land‐use changes. Finally, stratified random and user‐defined plots sampling methods were synthetically used to obtain total 966 reference points for accuracy assessment. Although errors and confusion exist, this method shows satisfying results with an overall accuracy to be 89.54% and 0.88 for the kappa coefficient. When compared with the post‐classification method, PCA‐based change detection also showed a better accuracy in terms of overall, producers, and users accuracy and kappa index. The results suggested that significant land‐use changes have occurred in Hangzhou City from 2000 to 2003, which may be related to rapid economy development and urban expansion. It is further indicated that most changes occurred in cropland areas due to urban encroachment.


Environmental Monitoring and Assessment | 2009

Identification of soil heavy metal sources from anthropogenic activities and pollution assessment of Fuyang County, China

Xiuying Zhang; Fenfang Lin; Mike T.F. Wong; X. L. Feng; Kaiwei Wang

Understanding regional variations of soil heavy metals and their anthropogenic influence are very important for environmental planning. In this study, 286 surface soil samples were collected in Fuyang county, and the ‘total’ metals for copper (Cu), zinc (Zn), lead (Pb), cadmium (Cd) and nickel (Ni) were measured in 2005. Statistic analysis showed that Cu, Zn, Pb and Cd had been added by exterior factors, and Ni was mainly controlled by natural factors. The combination of multivariate statistical and geostatistical analysis successfully grouped three groups (Cu, Zn and Pb; Cd; and Ni) of heavy metals from different sources. Through pollution evaluation, it was found that 15.76% of the study area for Cu, Zn and Pb, and 46.14% for Cd suffered from moderate or severe pollution. Further spatial analysis identified the limestone mining activities, paper mills, cement factory and metallurgic activities were the main sources for the concentration of Cu, Zn, Pb and Cd in soils, and soil Ni was mainly determined by the parent materials.


Journal of remote sensing | 2009

Scaling of impervious surface area and vegetation as indicators to urban land surface temperature using satellite data

Xiuying Zhang; Taiyang Zhong; Kaiwei Wang; Z. Cheng

Vegetation and impervious surface as indicators of urban land surface temperature (LST) across a spatial resolution from 30 to 960 m were investigated in this study. Enhanced thematic mapper plus (ETM+) data were used to retrieve LST in Nanjing, China. A land cover map was generated using a decision tree method from IKONOS imagery. Taking the normalized difference vegetation index (NDVI) and percent vegetation area (V) to present vegetated cover, and the normalized difference building index (NDBI) and percent impervious surface area (I) to present impervious surface, the correlation coefficients and linear regression models between the LST and the indicators were simulated. Comparison results indicated that vegetation had stronger correlation with the LST than the impervious surface at 30 and 60 m, a similar magnitude of correlation at 120 and 240 m, and a much lower correlation at 480 and 960 m. In total, the impervious surface area was a slightly better indicator to the LST than the vegetation because all of the correlation coefficients were relatively high (>0.5000) across the spatial resolution from 30 to 960 m. The indicators of LST, V and I are slightly better than the NDVI and NDBI, respectively, based on the correlation coefficients between the LST and the four indices. The strongest correlation of the LST and vegetation at the resolution of 120 m, and the strongest correlation between the LST and impervious surface at 120, 480 and 960 m, denoted the operational scales of LST variations.


Sensors | 2016

Expanding the Detection of Traversable Area with RealSense for the Visually Impaired

Kailun Yang; Kaiwei Wang; Weijian Hu; Jian Bai

The introduction of RGB-Depth (RGB-D) sensors into the visually impaired people (VIP)-assisting area has stirred great interest of many researchers. However, the detection range of RGB-D sensors is limited by narrow depth field angle and sparse depth map in the distance, which hampers broader and longer traversability awareness. This paper proposes an effective approach to expand the detection of traversable area based on a RGB-D sensor, the Intel RealSense R200, which is compatible with both indoor and outdoor environments. The depth image of RealSense is enhanced with IR image large-scale matching and RGB image-guided filtering. Traversable area is obtained with RANdom SAmple Consensus (RANSAC) segmentation and surface normal vector estimation, preliminarily. A seeded growing region algorithm, combining the depth image and RGB image, enlarges the preliminary traversable area greatly. This is critical not only for avoiding close obstacles, but also for allowing superior path planning on navigation. The proposed approach has been tested on a score of indoor and outdoor scenarios. Moreover, the approach has been integrated into an assistance system, which consists of a wearable prototype and an audio interface. Furthermore, the presented approach has been proved to be useful and reliable by a field test with eight visually impaired volunteers.


Optics Express | 2015

Field-widened Michelson interferometer for spectral discrimination in high-spectral-resolution lidar: theoretical framework

Zhongtao Cheng; Dong Liu; Jing Luo; Yongying Yang; Yudi Zhou; Yupeng Zhang; Lulin Duan; Lin Su; Liming Yang; Yibing Shen; Kaiwei Wang; Jian Bai

A field-widened Michelson interferometer (FWMI) is developed to act as the spectral discriminator in high-spectral-resolution lidar (HSRL). This realization is motivated by the wide-angle Michelson interferometer (WAMI) which has been used broadly in the atmospheric wind and temperature detection. This paper describes an independent theoretical framework about the application of the FWMI in HSRL for the first time. In the framework, the operation principles and application requirements of the FWMI are discussed in comparison with that of the WAMI. Theoretical foundations for designing this type of interferometer are introduced based on these comparisons. Moreover, a general performance estimation model for the FWMI is established, which can provide common guidelines for the performance budget and evaluation of the FWMI in the both design and operation stages. Examples incorporating many practical imperfections or conditions that may degrade the performance of the FWMI are given to illustrate the implementation of the modeling. This theoretical framework presents a complete and powerful tool for solving most of theoretical or engineering problems encountered in the FWMI application, including the designing, parameter calibration, prior performance budget, posterior performance estimation, and so on. It will be a valuable contribution to the lidar community to develop a new generation of HSRLs based on the FWMI spectroscopic filter.


Applied Optics | 2014

Common-path and compact wavefront diagnosis system based on cross grating lateral shearing interferometer

Tong Ling; Yongying Yang; Xiumei Yue; Dong Liu; Yifang Ma; Jian Bai; Kaiwei Wang

A common-path and compact wavefront diagnosis system for both continuous and transient wavefronts measurement is proposed based on cross grating lateral shearing interferometer (CGLSI). Derived from the basic CGLSI configuration, this system employs an aplanatic lens to convert the wavefront under test into a convergent beam, which makes it possible for CGLSI to test the wavefront of collimated beams. A geometrical optics model for grating pitch determination and a Fresnel diffraction model for order selection mask design are presented. Then a detailed analysis about the influence of the grating pitch, the distance from the cross grating to the order selection mask and the numerical aperture of the aplanatic lens on the system error is made, and a calibration method is proposed to eliminate the system error. In addition, the differential Zernike polynomials fitting method is introduced for wavefront retrieval. Before our experiment, we have designed several grating pitches and their corresponding order selection mask parameters. In the final comparative experiment with ZYGO interferometer, the wavefront diagnosis system exhibits both high precision and repeatability.


Wang, K., Yang, Y., Bell, R.W. <http://researchrepository.murdoch.edu.au/view/author/Bell, Richard.html>, Xue, J.M., Ye, Z.Q. and Wei, Y.Z. (1999) Low risks of toxicity from boron fertiliser in oilseed rape-rice rotations in southeast China. Nutrient Cycling in Agroecosystems, 54 (2). pp. 189-197. | 1999

Low risks of toxicity from boron fertiliser in oilseed rape–rice rotations in southeast China

Kaiwei Wang; Y. Yang; R.W. Bell; J.M. Xue; Zhengqian Ye; Y.Z. Wei

Yields in intensive rice (Oryza sativa L.) -based rotations in Asia are stagnating or declining because of decreasing nutrient availability and depletion of soil nutrient reserves. In the rape (Brassica napus L.)–rice–rice cropping rotation of southeast China, where boron (B) deficiency is widespread and B fertiliser is needed to correct it, our objective was to evaluate the risks of fertiliser-induced B toxicity in oilseed rape and in rice. Response of oilseed rape to B fertiliser application at rates up to 6.6 kg B ha-1 was studied in seven field experiments on three contrasting soils of Zhejiang province, alluvial, red and blue-purple soils. The effects of up to 3.3 kg B ha-1 in 1 year, 6.6 kg B ha-1 in 2 years or 9.9 kg B ha-1 in 3 years were studied on oilseed rape and the one or two rice crops grown immediately after rape in each annual crop rotation. Soils varied in initial hot CaCl2-extractable B in the 0–15-cm layer from 0.24 to 0.99 mg kg-1. At the stem elongation stage of oilseed rape, 3.3 kg B ha-1 depressed shoot dry matter on soils with low clay and organic matter content. However, the subsequent effects of high fertiliser B on seed yield were minimal even at 6.6 kg B ha-1. Moreover, the application of a total of 6.6 or 9.9 kg B ha-1 as successive annual applications of 3.3 kg B ha-1 to oilseed rape generally had no negative effect on seed yield of oilseed rape. The single exception was on a sandy alluvial soil where a total of 6.6 kg B ha-1 in 2 years slightly depressed seed yield of oilseed rape. Grain yields of rice crops grown in rotation after oilseed rape were unaffected by B applications up to 6.6 kg ha-1. The minimal effects of a total of 6.6 kg B ha-1 applied over 2 years on seed yield were consistent with the modest increase in hot CaCl2-extractable B levels. It is concluded that there is limited risk of B toxicity from the use of borax fertiliser at up to 4–8 times recommended rates in rape–rice cropping rotations in southeast China. The low risk of B toxicity can be attributed to the relatively high B removal in harvested seed, grain and stubble, the redistribution of fertiliser B by leaching in the 0–60 cm layer and to B sorption.


Sensors | 2017

Detecting Traversable Area and Water Hazards for the Visually Impaired with a pRGB-D Sensor

Kailun Yang; Kaiwei Wang; Ruiqi Cheng; Weijian Hu; Xiao Huang; Jian Bai

The use of RGB-Depth (RGB-D) sensors for assisting visually impaired people (VIP) has been widely reported as they offer portability, function-diversity and cost-effectiveness. However, polarization cues to assist traversability awareness without precautions against stepping into water areas are weak. In this paper, a polarized RGB-Depth (pRGB-D) framework is proposed to detect traversable area and water hazards simultaneously with polarization-color-depth-attitude information to enhance safety during navigation. The approach has been tested on a pRGB-D dataset, which is built for tuning parameters and evaluating the performance. Moreover, the approach has been integrated into a wearable prototype which generates a stereo sound feedback to guide visually impaired people (VIP) follow the prioritized direction to avoid obstacles and water hazards. Furthermore, a preliminary study with ten blindfolded participants suggests its effectivity and reliability.


Optics Express | 2016

Minimizing cross-axis sensitivity in grating-based optomechanical accelerometers.

Qianbo Lu; Chen Wang; Jian Bai; Kaiwei Wang; Shuqi Lou; Xufen Jiao; Dandan Han; Guoguang Yang; Dong Liu; Yongying Yang

Cross-axis sensitivity of single-axis optomechanical accelerometers, mainly caused by the asymmetric structural design, is an essential issue primarily for high performance applications, which has not been systematically researched. This paper investigates the generating mechanism and detrimental effects of the cross-axis sensitivity of a high resoluion single-axis optomechanical accelerometer, which is composed of a grating-based cavity and an acceleration sensing chip consisting of four crab-shaped cantilevers and a proof mass. The modified design has been proposed and a prototype setup has been built based on the model of cross-axis sensitivity in optomechanical accelerometers. The characterization of the cross-axis sensitivity of a specific optomechanical accelerometer is quantitatively discussed for both mechanical and optical components by numerical simulation and theoretical analysis in this work. The analysis indicates that the cross-axis sensitivity decreases the contrast ratio of the interference signal and the acceleration sensitivity, as well as giving rise to an additional optical path difference, which would impact the accuracy of the accelerometer. The improved mechanical design is achieved by double side etching on a specific double-substrate-layer silicon-on-insulator (SOI) wafer to move the center of the proof mass to the support plane. The experimental results demonstrate that the modified design with highly symmetrical structure can suppress the cross-axis sensitivity significantly without compromising the sensitivity and resolution. The cross-axis sensitivity defined by the contrast ratio of the output signal drops to 2.19% /0.1g from 28.28%/0.1g under the premise that the acceleration sensitivity of this single-axis optomechanical accelerometer remains 1162.45V/g and the resolution remains 1.325μg.


Archive | 1997

The influence of boron fertilizer on distribution of extractable boron in soil profiles in rape-rice rotations in southeast China

Kaiwei Wang; Jianming Xu; Y.Z. Wei; Y. Yang; R.W. Bell

Soil application of borax is recommended but not widely adopted to correct boron (B) deficiency of oilseed rape (Brassica napus L.) in southeast China. In order to estimate the residual value of applied B fertilizers field experiments in three important soils of southeast China were conducted to study the effect of B fertilizer on the depthwise distribution of soil extractable B over a 3 year period in rape-rice (Oryza sativa L.) rotations. A single application of up to 30 kg borax ha-1 increased soil extractable B concentrations significantly not only in the 0–20 cm layer but also in the 20–40 cm layer. Repeated B fertilizer application increased soil extractable B concentrations with each successive application and to greater soil depths. Applications of 15 and 30 kg borax ha-1, while increasing B levels in the profile in the year of addition, had no residual effect on soil extractable B in the next year in the blue purple paddy soil, but did in the 0–20 cm layer of alluvial and red soils in the second year. There was limited B leaching from borax applications up to 30 kg ha r except in the red soil. At 15 kg borax ha-1, soil B levels were maintained over 3 successive years under the rape-rice rotation at levels greater than control soils.

Collaboration


Dive into the Kaiwei Wang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge