Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Yongying Yang is active.

Publication


Featured researches published by Yongying Yang.


Tribology Letters | 2001

Tribological properties of carbon-nanotube-reinforced copper composites

Jiangping Tu; Yongying Yang; Linrun Wang; X.C. Ma; Xingguo Zhang

Tribological properties of carbon-nanotube-reinforced copper composites were investigated using a pin-on-disk test rig under dry conditions. The composites containing 4–16 vol% carbon nanotubes (CNTs) were fabricated by a powder-metallurgy technique. The tests were carried out at normal loads between 10 and 50 N, and the effect of volume fraction of CNTs on tribological behavior of the composites was examined. The composites revealed a low coefficient of friction compared with the copper matrix alloy. Due to the effects of the reinforcement and reduced friction, the wear rate of the composites decreased with increasing volume fraction of CNTs at low and intermediate loads. The composites with a high volume fraction of CNTs exhibited high porosity and their wear resistance decreased under high-load conditions.


Applied Optics | 2011

Point diffraction interferometer with adjustable fringe contrast for testing spherical surfaces

Daodang Wang; Yongying Yang; Chen Chen; Yongmo Zhuo

A point diffraction interferometer (PDI) with adjustable fringe contrast is presented for the high-precision testing of spherical surfaces. The polarizing components are employed in the PDI to transform the polarization states of the test and reference beams, and a good fringe contrast can be realized by adjusting the relative intensities of interfering waves. The proposed system is compact and simple in structure, and it provides a feasible way for high-precision testing of spherical surfaces with low reflectivity. The theory of the interferometer is introduced in detail, along with the properties of optical components employed in the system, numerical analysis of systematic error, and the corresponding calibration procedure. Compared with the testing results of the ZYGO interferometer, a high accuracy with RMS value about 0.0025λ is achieved with the proposed interferometer. Finally, the error consideration in the experiment is discussed.


Optics Express | 2009

Practical methods for retrace error correction in nonnull aspheric testing

Dong Liu; Yongying Yang; Chao Tian; Yongjie Luo; Lin Wang

Nonnull test is often adopted for aspheric testing. But due to its violation of null condition, the testing rays will follow different paths from the reference and aberrations from the interferometer will not cancel out, leading to widely difference between the obtained surface figure and that of the real, which is called the Retrace-error accordingly. In this paper, retrace error of nonnull aspheric testing is analyzed in detail with conclusions that retrace error has much to do with the aperture, F number and surface shape error of the aspheric under test. Correcting methods are proposed according to the manner of the retrace errors. Both computer simulation and experimental results show that the proposed methods can correct the retrace error effectively. The analysis and proposed correction methods bring much to the application of nonnull aspheric testing.


Applied Optics | 2007

Real time diagnosis of transient pulse laser with high repetition by radial shearing interferometer

Dong Liu; Yongying Yang; Lin Wang; Yongmo Zhuo

Transient, high repetition pulse laser can be applied to test numerous physical parameters, where in situ, real time measurement and isolation of vibration is highly demanded. Because of its short half-width, high power, high repetition, and even large distortion, the laser presents unique challenges to conventional diagnosing methods. A system based on a novel cyclic radial shearing interferometer is proposed to diagnose the transient, high repetition pulse laser with common path, no reference plane, and high precision. With the spatial-carrier methods, the system needs only one interferogram to reconstruct amplitude and wavefront of the laser. The theories of amplitude and wavefront reconstruction have been validated by computer simulation, and errors less than 1/1000lambda are obtained for both. Comparing with the results of the ZYGO interferometer, an error less than 1/20lambda for both peak-valley and root-mean-square values is gained with good repeatability for the wavefront. The calibration process and real time diagnosis of a high repetition pulse laser are presented then. Finally, the error consideration and system optimization are discussed in detail.


Optics Express | 2013

Retrieval and analysis of a polarized high-spectral-resolution lidar for profiling aerosol optical properties

Dong Liu; Yongying Yang; Zhongtao Cheng; Hanlu Huang; Bo Zhang; Tong Ling; Yibing Shen

Taking advantage of the broad spectrum of the Cabannes-Brillouin scatter from atmospheric molecules, the high spectral resolution lidar (HSRL) technique employs a narrow spectral filter to separate the aerosol and molecular scattering components in the lidar return signals and therefore can obtain the aerosol optical properties as well as the lidar ratio (i.e., the extinction-to-backscatter ratio) which is normally selected or modeled in traditional backscatter lidars. A polarized HSRL instrument, which employs an interferometric spectral filter, is under development at the Zhejiang University (ZJU), China. In this paper, the theoretical basis to retrieve the aerosol lidar ratio, depolarization ratio and extinction and backscatter coefficients, is presented. Error analyses and sensitivity studies have been carried out on the spectral transmittance characteristics of the spectral filter. The result shows that a filter that has as small aerosol transmittance (i.e., large aerosol rejection rate) and large molecular transmittance as possible is desirable. To achieve accurate retrieval, the transmittance of the spectral filter for molecular and aerosol scattering signals should be well characterized.


Applied Optics | 2011

Misalignment aberrations calibration in testing of high-numerical-aperture spherical surfaces

Daodang Wang; Yongying Yang; Chen Chen; Yongmo Zhuo

The calibration of misalignment aberrations is a key issue in the testing of high-numerical-aperture spherical surfaces, and it is hard to separate the high-order aberrations introduced by misalignment from the measured data. The traditional calibration method is still applicable in the case of only wavefront tilt, but no longer effective in the existence of defocus. A calibration technique based on the wavefront difference is proposed to calibrate the misalignment aberrations in the presence of wavefront defocus, and it can be carried out without foreknowledge of the spherical surface under test. With the wavefront difference method, the calibration needs two separate measurements to separate the high-order aberrations. Both the computer simulation and experiments with the ZYGO interferometer have been carried out to validate the proposed calibration technique, with the accuracies better than 0.0005λ RMS and 0.0010λ RMS achieved, respectively. The proposed calibration method provides a feasible way to lower the requirement on the adjustment in the measurement, while retaining good accuracy.


Applied Optics | 2010

Demodulation of a single complex fringe interferogram with a path-independent regularized phase-tracking technique.

Chao Tian; Yongying Yang; Dong Liu; Yongjie Luo; Yongmo Zhuo

The two-dimensional regularized phase-tracking (RPT) technique is one of the most powerful approaches to demodulate a single interferogram with either open or closed fringes. However, it often fails in the cases of complex interferograms and needs well-defined scanning strategies. An improved algorithm based on the RPT is presented in this paper. We use a paraboloid phase model to approximate the phase function and modify the cost functional to search the smoothest phase solutions in the function space C(2). With these modifications, the phase tracker preserves the robustness of the RPT while at the same time it is no more sensitive to stationary points and is capable of demodulating complex interferograms with arbitrary scanning schemes. Moreover, the phase reconstructed by the proposed algorithm is normally more accurate than that of the RPT both for noiseless and noisy interferograms under the same conditions. Computer simulations and experimental results are both presented.


Optics Express | 2013

Dark-field microscopic image stitching method for surface defects evaluation of large fine optics

Dong Liu; Shitong Wang; Pin Cao; Lu Li; Zhongtao Cheng; Xin Gao; Yongying Yang

One of the challenges in surface defects evaluation of large fine optics is to detect defects of microns on surfaces of tens or hundreds of millimeters. Sub-aperture scanning and stitching is considered to be a practical and efficient method. But since there are usually few defects on the large aperture fine optics, resulting in no defects or only one run-through line feature in many sub-aperture images, traditional stitching methods encounter with mismatch problem. In this paper, a feature-based multi-cycle image stitching algorithm is proposed to solve the problem. The overlapping areas of sub-apertures are categorized based on the features they contain. Different types of overlapping areas are then stitched in different cycles with different methods. The stitching trace is changed to follow the one that determined by the features. The whole stitching procedure is a region-growing like process. Sub-aperture blocks grow bigger after each cycle and finally the full aperture image is obtained. Comparison experiment shows that the proposed method is very suitable to stitch sub-apertures that very few feature information exists in the overlapping areas and can stitch the dark-field microscopic sub-aperture images very well.


Applied Optics | 2011

Nonnull interferometer simulation for aspheric testing based on ray tracing.

Chao Tian; Yongying Yang; Tao Wei; Yongmo Zhuo

The nonnull interferometric method that employs a partial compensation system to compensate for the longitude aberration of the aspheric under test and a reverse optimization procedure to correct retrace errors is a useful technique for general aspheric testing. However, accurate system modeling and simulation are required to correct retrace errors and reconstruct fabrication error of the aspheric. Here, we propose a ray-tracing-based method to simulate the nonnull interferometer, which calculates the optical path difference by tracing rays through the reference path and the test path. To model a nonrotationally symmetric fabrication error, we mathematically represent it with a set of Zernike polynomials (i.e., Zernike deformation) and derive ray-tracing formulas for the deformed surface, which can also deal with misalignment situations (i.e., a surface with tilts and/or decenters) and thus facilitates system modeling extremely. Simulation results of systems with (relatively) large and small Zernike deformations and their comparisons with the lens design program Zemax have demonstrated the correctness and effectiveness of the method.


Applied Optics | 2014

Effects of spectral discrimination in high-spectral-resolution lidar on the retrieval errors for atmospheric aerosol optical properties.

Zhongtao Cheng; Dong Liu; Jing Luo; Yongying Yang; Lin Su; Liming Yang; Hanlu Huang; Yibing Shen

This paper presents detailed analysis about the effects of spectral discrimination on the retrieval errors for atmospheric aerosol optical properties in high-spectral-resolution lidar (HSRL). To the best of our knowledge, this is the first study that focuses on this topic comprehensively, and our goal is to provide some heuristic guidelines for the design of the spectral discrimination filter in HSRL. We first introduce a theoretical model for retrieval error evaluation of an HSRL instrument with a general three-channel configuration. The model only takes the error sources related to the spectral discrimination parameters into account, while other error sources not associated with these focused parameters are excluded on purpose. Monte Carlo (MC) simulations are performed to validate the correctness of the theoretical model. Results from both the model and MC simulations agree very well, and they illustrate one important, although not well realized, fact: a large molecular transmittance and a large spectral discrimination ratio (SDR, i.e., ratio of the molecular transmittance to the aerosol transmittance) are beneficial to promote the retrieval accuracy. More specifically, we find that a large SDR can reduce retrieval errors conspicuously for atmosphere at low altitudes, while its effect on the retrieval for high altitudes is very limited. A large molecular transmittance contributes to good retrieval accuracy everywhere, particularly at high altitudes, where the signal-to-noise ratio is small. Since the molecular transmittance and SDR are often trade-offs, we suggest considering a suitable SDR for higher molecular transmittance instead of using unnecessarily high SDR when designing the spectral discrimination filter. These conclusions are expected to be applicable to most of the HSRL instruments, which have similar configurations as the one discussed here.

Collaboration


Dive into the Yongying Yang's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chao Tian

University of Michigan

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge