Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kamal Mustafa is active.

Publication


Featured researches published by Kamal Mustafa.


Acta Biomaterialia | 2012

Electroactive porous tubular scaffolds with degradability and non-cytotoxicity for neural tissue regeneration

Baolin Guo; Yang Sun; Anna Finne-Wistrand; Kamal Mustafa; Ann-Christine Albertsson

Electroactive degradable porous tubular scaffolds were fabricated from the blends of polycaprolactone and a hyperbranched degradable conducting copolymer at different feed ratios by a solution-casting/salt-leaching method. Scaning electron microscopy (SEM) and microcomputed tomography tests indicated that these scaffolds had homogeneously distributed interconnected pores on the cross-section and surface. The electrical conductivity of films with the same composition as the scaffolds was between 3.4×10(-6) and 3.1×10(-7) S cm(-1), depending on the ratio of hyperbranched degradable conducting copolymer to polycaprolactone. A hydrophilic surface with a contact angle of water about 30° was achieved by doping the films with (±)-10-camphorsulfonic acid. The mechanical properties of the films were investigated by tensile tests, and the morphology of the films was studied by SEM. The scaffolds were subjected to the WST test (a cell proliferation and cytotoxicity assay using water-soluble tetrazolium salts) with HaCaT keratinocyte cells, and the results show that these scaffolds are non-cytotoxic. These degradable electroactive tubular scaffolds are good candidates for neural tissue engineering application.


Biomedical Engineering Online | 2009

Endothelial cells influence the osteogenic potential of bone marrow stromal cells

Ying Xue; Zhe Xing; Sølve Hellem; Kristina Arvidson; Kamal Mustafa

BackgroundImproved understanding of the interactions between bone cells and endothelial cells involved in osteogenesis should aid the development of new strategies for bone tissue engineering. The aim of the present study was to determine whether direct communication between bone marrow stromal cells (MSC) and human umbilical vein endothelial cells (EC) could influence the osteogenic potential of MSC in osteogenic factor-free medium.MethodsAfter adding EC to MSC in a direct-contact system, cell viability and morphology were investigated with the WST assay and immnostaining. The effects on osteogenic differentiation of adding EC to MSC was systematically tested by the using Superarray assay and results were confirmed with real-time PCR.ResultsFive days after the addition of EC to MSC in a ratio of 1:5 (EC/MSC) significant increases in cell proliferation and cellular bridges between the two cell types were detected, as well as increased mRNA expression of alkaline phosphatase (ALP). This effect was greater than that seen with addition of osteogenic factors such as dexamethasone, ascorbic acid and β-glycerophosphate to the culture medium. The expression of transcription factor Runx2 was enhanced in MSC incubated with osteogenic stimulatory medium, but was not influenced by induction with EC. The expression of Collagen type I was not influenced by EC but the cells grown in the osteogenic factor-free medium exhibited higher expression than those cultured with osteogenic stimulatory medium.ConclusionThese results show that co-culturing of EC and MSC for 5 days influences osteogenic differentiation of MSC, an effect that might be independent of Runx2, and enhances the production of ALP by MSC.


Journal of Controlled Release | 2015

Release and bioactivity of bone morphogenetic protein-2 are affected by scaffold binding techniques in vitro and in vivo

Salwa Suliman; Zhe Xing; Xujun Wu; Ying Xue; Torbjørn Østvik Pedersen; Yang Sun; Anne P. Døskeland; Joachim Nickel; Thilo Waag; Henning Lygre; Anna Finne-Wistrand; Doris Steinmüller-Nethl; Anke Krueger; Kamal Mustafa

A low dose of 1μg rhBMP-2 was immobilised by four different functionalising techniques on recently developed poly(l-lactide)-co-(ε-caprolactone) [(poly(LLA-co-CL)] scaffolds. It was either (i) physisorbed on unmodified scaffolds [PHY], (ii) physisorbed onto scaffolds modified with nanodiamond particles [nDP-PHY], (iii) covalently linked onto nDPs that were used to modify the scaffolds [nDP-COV] or (iv) encapsulated in microspheres distributed on the scaffolds [MICS]. Release kinetics of BMP-2 from the different scaffolds was quantified using targeted mass spectrometry for up to 70days. PHY scaffolds had an initial burst of release while MICS showed a gradual and sustained increase in release. In contrast, NDP-PHY and nDP-COV scaffolds showed no significant release, although nDP-PHY scaffolds maintained bioactivity of BMP-2. Human mesenchymal stem cells cultured in vitro showed upregulated BMP-2 and osteocalcin gene expression at both week 1 and week 3 in the MICS and nDP-PHY scaffold groups. These groups also demonstrated the highest BMP-2 extracellular protein levels as assessed by ELISA, and mineralization confirmed by Alizarin red. Cells grown on the PHY scaffolds in vitro expressed collagen type 1 alpha 2 early but the scaffold could not sustain rhBMP-2 release to express mineralization. After 4weeks post-implantation using a rat mandible critical-sized defect model, micro-CT and Masson trichrome results showed accelerated bone regeneration in the PHY, nDP-PHY and MICS groups. The results demonstrate that PHY scaffolds may not be desirable for clinical use, since similar osteogenic potential was not seen under both in vitro and in vivo conditions, in contrast to nDP-PHY and MICS groups, where continuous low doses of BMP-2 induced satisfactory bone regeneration in both conditions. The nDP-PHY scaffolds used here in critical-sized bone defects for the first time appear to have promise compared to growth factors adsorbed onto a polymer alone and the short distance effect prevents adverse systemic side effects.


Journal of Bioactive and Compatible Polymers | 2010

Osteogenic Differentiation by Rat Bone Marrow Stromal Cells on Customized Biodegradable Polymer Scaffolds

Staffan Dånmark; Anna Finne-Wistrand; Mikael Wendel; Kristina Arvidson; Ann-Christine Albertsson; Kamal Mustafa

In this report, poly(L-lactide-co-ε-caprolactone), poly(LLA-co-CL) and poly(L-lactide-co-1,5-dioxepan-2-one), poly(LLA-co-DXO) were evaluated and compared for potential use in bone tissue engineering constructs together with bone marrow stromal cells (BMSC). The copolymers were tailored to reduce the level of harmful tin residuals in the scaffolding. BMSC isolated from Sprague—Dawley rats were seeded onto the scaffolds and cultured in vitro for up to 21 days. Cell spreading and proliferation was analyzed after 72 h by scanning electron microscopy and thiazolyl blue tetrazolium bromide (MTT) conversion assay. Osteogenic differentiation of BMSC was evaluated by real-time PCR after 14 and 21 days of culture. Hydrophilicity was significantly different between poly(LLA-co-CL) and poly(LLA-co-DXO) with the latter being more hydrophilic. After 72 h, both scaffolds supported increased cell proliferation and the mRNA expression of osteocalcin and osteopontin was significantly increased after 21 days. Further investigation of these constructs, with lower levels of tin residuals, are being pursued.


Journal of Dental Research | 2011

Genetic Responses to Nanostructured Calcium-phosphate-coated Implants

Ryo Jimbo; Ying Xue; Mariko Hayashi; Humberto Osvaldo Schwartz-Filho; Martin Andersson; Kamal Mustafa; Ann Wennerberg

Nanostructured calcium phosphate (CaP) has been histologically and biomechanically proven to enhance osseointegration of implants; however, conventional techniques were not sufficiently sensitive to capture its biological effects fully. Here, we compared the conventional removal torque (RTQ) evaluation and gene expression in tissues around nanostructured CaP-coated implants, using real-time RT-PCR, with those of uncoated implants, in a rabbit model. At 2 wks, RTQ values were significantly higher, alkaline phosphatase (ALP) expression was significantly higher, and runt-related transcription factor 2 and tumor necrosis factor-α expressions were significantly lower in the coated than in the uncoated implants. This indicates that inflammatory responses were suppressed and osteoprogenitor activity increased around the CaP-coated surface. At 4 wks, although RTQ values did not significantly differ between the 2 groups, ALP and osteocalcin (OCN) were significantly up-regulated in the coated group, indicating progressive mineralization of the bone around the implant. Moreover, an osteoclast marker, adenosine triphosphatase, which indicates acidification of the resorption lacunae, was significantly higher for the coated implants, suggesting gradual resorption of the CaP coating. This study reveals detailed genetic responses to nanostructured CaP-coated implants and provides evidence that the effect of nanotopography is significant during the osseointegration cascade.


Acta Biomaterialia | 2011

In vitro and in vivo degradation profile of aliphatic polyesters subjected to electron beam sterilization

Staffan Dånmark; Anna Finne-Wistrand; Kerstin Schander; Minna Hakkarainen; Kristina Arvidson; Kamal Mustafa; Ann-Christine Albertsson

Degradation characteristics in response to electron beam sterilization of designed and biodegradable aliphatic polyester scaffolds are relevant for clinically successful synthetic graft tissue regeneration. Scaffold degradation in vitro and in vivo were documented and correlated to the macroscopic structure and chemical design of the original polymer. The materials tested were of inherently diverse hydrophobicity and crystallinity: poly(L-lactide) (poly(LLA)) and random copolymers from L-lactide and ε-caprolactone or 1,5-dioxepan-2-one, fabricated into porous and non-porous scaffolds. After sterilization, the samples underwent hydrolysis in vitro for up to a year. In vivo, scaffolds were surgically implanted into rat calvarial defects and retrieved for analysis after 28 and 91days. In vitro, poly(L-lactide-co-1,5-dioxepan-2-one) (poly(LLA-co-DXO)) samples degraded most rapidly during hydrolysis, due to the pronounced chain-shortening reaction caused by the sterilization. This was indicated by the rapid decrease in both mass and molecular weight of poly(LLA-co-DXO). Poly(L-lactide-co-ε-caprolactone) (poly(LLA-co-CL)) samples were also strongly affected by sterilization, but mass loss was more gradual; molecular weight decreased rapidly during hydrolysis. Least affected by sterilization were the poly(LLA) samples, which subsequently showed low mass loss rate and molecular weight decrease during hydrolysis. Mechanical stability varied greatly: poly(LLA-co-CL) withstood mechanical testing for up to 182 days, while poly(LLA) and poly(LLA-co-DXO) samples quickly became too brittle. Poly(LLA-co-DXO) samples unexpectedly degraded more rapidly in vitro than in vivo. After sterilization by electron beam irradiation, the three biodegradable polymers present widely diverse degradation profiles, both in vitro and in vivo. Each exhibits the potential to be tailored to meet diverse clinical tissue engineering requirements.


Journal of Bioactive and Compatible Polymers | 2010

Biocompatibility of Polyester Scaffolds with Fibroblasts and Osteoblast-like Cells for Bone Tissue Engineering

Shaza Bushra Idris; Staffan Dånmark; Anna Finne-Wistrand; Kristina Arvidson; Ann-Christine Albertsson; Anne Isine Bolstad; Kamal Mustafa

The aim of this study was to evaluate the in vitro cytotoxicity and cytocompatibility of the developed aliphatic polyester co-polymer scaffolds: poly(L-lactide-co-ε-caprolactone) and poly(L-lactide-co-1,5-dioxepan-2-one). The scaffolds were produced by solvent casting and particulate leaching, and tested by direct and indirect contact cytotoxicity assays on human osteoblast-like cells and mouse fibroblasts. Cell morphology was documented by light and scanning electron microscopy. Viability was assessed by the MTT, neutral red uptake, lactic dehydrogenase and apoptosis assays. Extraction tests confirmed that the scaffolds did not have a cytotoxic effect on the cells. The cells grew and spread well on the test scaffolds with good cellular attachment and viability. The scaffolds are noncytotoxic and biocompatible with the two cell types and warrant continued investigation as potential constructs for bone tissue engineering.


Journal of Biomedical Materials Research Part A | 2011

Effect of endothelial cells on bone regeneration using poly(L-lactide-co-1,5-dioxepan-2-one) scaffolds

Zhe Xing; Ying Xue; Staffan Dånmark; Kerstin Schander; Siren Østvold; Kristina Arvidson; Sølve Hellem; Anna Finne-Wistrand; Ann-Christine Albertsson; Kamal Mustafa

Our recent in vitro study demonstrated that endothelial cells (ECs) might influence the differentiation of bone marrow stromal cells (BMSCs). Therefore, the aim of this study was to describe this effect in vivo, using a rat calvarial bone defect model. BMSCs were isolated from femurs of two-donor Lewis rats and expanded in α-minimum essential medium containing 10% fetal bovine serum. One fifth of BMSCs were induced and differentiated into ECs in an Endothelial Cell Growth Medium-2 and then characterized by a flow cytometry. The remaining BMSCs were cultured in freshly prepared osteogenic stimulatory medium, containing dexamethasone, ascorbic acid and β-glycerophosphate. Either BMSCs alone (BMSC-group) or co-cultured ECs/BMSCs (CO-group) were seeded into poly(L-lactide-co-1,5-dioxepan-2-one) [poly(LLA-co-DXO)] scaffolds, cultured in spinner flasks, and then implanted into symmetrical calvarial defects prepared in recipient rats. The animals were sacrificed after 2 months. The formation of new bone was evaluated by radiography and histology and by the expression of osteogenic markers using reverse transcriptase-polymerized chain reaction (RT-PCR). To investigate vessel formation, histological staining was performed with ECs markers. The radiographical and histological results showed more rapid bone formation in the CO- than in the BMSC-group. However, the expression of ECs marker was similar on both groups by histological analysis after 2 months postoperatively. Furthermore, the CO-group exhibited greater expression of osteogenic markers as demonstrated by RT-PCR. The results are consistent with the previous in vitro findings that poly(LLA-co-DXO) scaffold might be suitable candidate for bone tissue engineering. In vivo, bone regeneration was enhanced by a construct of the polymer scaffold loaded with co-cultured cells.


Stem Cell Research & Therapy | 2013

Endothelial microvascular networks affect gene-expression profiles and osteogenic potential of tissue-engineered constructs.

Torbjørn Østvik Pedersen; Anna Blois; Zhe Xing; Ying Xue; Yang Sun; Anna Finne-Wistrand; Lars A. Akslen; James B. Lorens; Knut N. Leknes; Inge Fristad; Kamal Mustafa

IntroductionA major determinant of the potential size of cell/scaffold constructs in tissue engineering is vascularization. The aims of this study were twofold: first to determine the in vitro angiogenic and osteogenic gene-expression profiles of endothelial cells (ECs) and mesenchymal stem cells (MSCs) cocultured in a dynamic 3D environment; and second, to assess differentiation and the potential for osteogenesis after in vivo implantation.MethodsMSCs and ECs were grown in dynamic culture in poly(L-lactide-co-1,5-dioxepan-2-one) (poly(LLA-co-DXO)) copolymer scaffolds for 1 week, to generate three-dimensional endothelial microvascular networks. The constructs were then implanted in vivo, in a murine model for ectopic bone formation. Expression of selected genes for angiogenesis and osteogenesis was studied after a 1-week culture in vitro. Human cell proliferation was assessed as expression of ki67, whereas α-smooth muscle actin was used to determine the perivascular differentiation of MSCs. Osteogenesis was evaluated in vivo through detection of selected markers, by using real-time RT-PCR, alkaline phosphatase (ALP), Alizarin Red, hematoxylin/eosin (HE), and Masson trichrome staining.ResultsThe results show that endothelial microvascular networks could be generated in a poly(LLA-co-DXO) scaffold in vitro and sustained after in vivo implantation. The addition of ECs to MSCs influenced both angiogenic and osteogenic gene-expression profiles. Furthermore, human ki67 was upregulated before and after implantation. MSCs could support functional blood vessels as perivascular cells independent of implanted ECs. In addition, the expression of ALP was upregulated in the presence of endothelial microvascular networks.ConclusionsThis study demonstrates that copolymer poly(LLA-co-DXO) scaffolds can be prevascularized with ECs and MSCs. Although a local osteoinductive environment is required to achieve ectopic bone formation, seeding of MSCs with or without ECs increases the osteogenic potential of tissue-engineered constructs.


Journal of Biomedical Materials Research Part A | 2009

An in vitro comparison of possibly bioactive titanium implant surfaces

Anna Göransson; Anna Arvidsson; Fredrik Currie; Victoria Franke-Stenport; Per Kjellin; Kamal Mustafa; Young-Teg Sul; Ann Wennerberg

The aim of the study was to compare Ca and P formation (CaP) and subsequent bone cell response of a blasted and four different possibly bioactive commercially pure (cp) titanium surfaces; 1. Fluoride etched (Fluoride), 2. Alkali-heat treated (AH), 3. Magnesium ion incorporated anodized (TiMgO), and 4. Nano HA coated and heat treated (nano HA) in vitro. Furthermore, to evaluate the significance of the SBF formed CaP coat on bone cell response. The surfaces were characterized by Optical Interferometry, Scanning Electron Microscopy (SEM) and X-ray Photoelectron Spectroscopy (XPS). CaP formation was evaluated after 12, 24 and 72 h in simulated body fluid (SBF). Primary human mandibular osteoblast-like cells were cultured on the various surfaces subjected to SBF for 72 h. Cellular attachment, differentiation (osteocalcin) and protein production (TGF-beta(1)) was evaluated after 3 h and 10 days respectively. Despite different morphological appearances, the roughness of the differently modified surfaces was similar. The possibly bioactive surfaces gave rise to an earlier CaP formation than the blasted surface, however, after 72 h the blasted surface demonstrated increased CaP formation compared to the possibly bioactive surfaces. Subsequent bone cell attachment was correlated to neither surface roughness nor the amount of formed CaP after SBF treatment. In contrast, osteocalcin and TGF-beta(1) production were largely correlated to the amount of CaP formed on the surfaces. However, bone response (cell attachment, osteocalcin and TGF-F production) on the blasted controls were similar or increased compared to the SBF treated fluoridated, AH and TiMgO surface.

Collaboration


Dive into the Kamal Mustafa's collaboration.

Top Co-Authors

Avatar

Anna Finne-Wistrand

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ying Xue

University of Bergen

View shared research outputs
Top Co-Authors

Avatar

Zhe Xing

University of Bergen

View shared research outputs
Top Co-Authors

Avatar

Yang Sun

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Staffan Dånmark

Royal Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge