Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kamalika Moulick is active.

Publication


Featured researches published by Kamalika Moulick.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models

Eloisi Caldas-Lopes; Leandro Cerchietti; James H. Ahn; Cristina C. Clement; Ana I. Robles; Anna Rodina; Kamalika Moulick; Tony Taldone; Alexander Gozman; Yunke Guo; Nian Wu; Elisa de Stanchina; Julie White; Steven S. Gross; Yuliang Ma; Lyuba Varticovski; Ari Melnick; Gabriela Chiosis

Triple-negative breast cancers (TNBCs) are defined by a lack of expression of estrogen, progesterone, and HER2 receptors. Because of the absence of identified targets and targeted therapies, and due to a heterogeneous molecular presentation, treatment guidelines for patients with TNBC include only conventional chemotherapy. Such treatment, while effective for some, leaves others with high rates of early relapse and is not curative for any patient with metastatic disease. Here, we demonstrate that these tumors are sensitive to the heat shock protein 90 (Hsp90) inhibitor PU-H71. Potent and durable anti-tumor effects in TNBC xenografts, including complete response and tumor regression, without toxicity to the host are achieved with this agent. Notably, TNBC tumors respond to retreatment with PU-H71 for several cycles extending for over 5 months without evidence of resistance or toxicity. Through a proteomics approach, we show that multiple oncoproteins involved in tumor proliferation, survival, and invasive potential are in complex with PU-H71-bound Hsp90 in TNBC. PU-H71 induces efficient and sustained downregulation and inactivation, both in vitro and in vivo, of these proteins. Among them, we identify downregulation of components of the Ras/Raf/MAPK pathway and G2-M phase to contribute to its anti-proliferative effect, degradation of activated Akt and Bcl-xL to induce apoptosis, and inhibition of activated NF-κB, Akt, ERK2, Tyk2, and PKC to reduce TNBC invasive potential. The results identify Hsp90 as a critical and multimodal target in this most difficult to treat breast cancer subtype and support the use of the Hsp90 inhibitor PU-H71 for clinical trials involving patients with TNBC.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Roles of heat-shock protein 90 in maintaining and facilitating the neurodegenerative phenotype in tauopathies

Wenjie Luo; Fei Dou; Anna Rodina; Sophorn Chip; Joungnam Kim; Qi Zhao; Kamalika Moulick; Julia Aguirre; Nian Wu; Paul Greengard; Gabriela Chiosis

Neurodegeneration, a result of multiple dysregulatory events, is a lengthy multistep process manifested by accrual of mutant variants and abnormal expression, posttranslational modification, and processing of certain proteins. Accumulation of these dysregulated processes requires a mechanism that maintains their functional stability and allows the evolution of the neurodegenerative phenotype. In malignant cells, the capacity to buffer transformation has been attributed to heat-shock protein 90 (Hsp90). Although normal proteins seem to require limited assistance from the chaperone, their aberrant counterparts seem to be highly dependent on Hsp90. Whereas enhanced Hsp90 affinity for mutated or functionally deregulated client proteins has been observed for several oncoproteins, it is unknown whether Hsp90 plays a similar role for neuronal proteins and thus maintains and facilitates the transformed phenotype in neurodegenerative diseases. Tauopathies are neurodegenerative diseases characterized by aberrant phosphorylation and/or expression of Tau protein, leading to a time-dependent accumulation of Tau aggregates and subsequent neuronal death. Here, we show that the stability of p35, a neuronal protein that activates cyclin-dependent protein kinase 5 through complex formation leading to aberrant Tau phosphorylation, and that of mutant but not WT Tau protein is maintained in tauopathies by Hsp90. Inhibition of Hsp90 in cellular and mouse models of tauopathies leads to a reduction of the pathogenic activity of these proteins and results in elimination of aggregated Tau. The results identify important roles played by Hsp90 in maintaining and facilitating the degenerative phenotype in these diseases and provide a common principle governing cancer and neurodegenerative diseases.


Nature Chemical Biology | 2011

Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90

Kamalika Moulick; James H. Ahn; Hongliang Zong; Anna Rodina; Leandro Cerchietti; Erica Gomes DaGama; Eloisi Caldas-Lopes; Kristin Beebe; Fabiana Perna; Katerina Hatzi; Ly P. Vu; Xinyang Zhao; Danuta Zatorska; Tony Taldone; Peter Smith-Jones; Mary L. Alpaugh; Steven S. Gross; Nagavarakishore Pillarsetty; Thomas Ku; Jason S. Lewis; Steven M. Larson; Ross L. Levine; Hediye Erdjument-Bromage; Monica L. Guzman; Stephen D. Nimer; Ari Melnick; Len Neckers; Gabriela Chiosis

Most cancers are characterized by multiple molecular alterations, but identification of the key proteins involved in these signaling pathways is currently beyond reach. We show that the inhibitor PU-H71 preferentially targets tumor-enriched Hsp90 complexes and affinity captures Hsp90-dependent oncogenic client proteins. We have used PU-H71 affinity capture to design a proteomic approach that, when combined with bioinformatic pathway analysis, identifies dysregulated signaling networks and key oncoproteins in chronic myeloid leukemia. The identified interactome overlaps with the well-characterized altered proteome in this cancer, indicating that this method can provide global insights into the biology of individual tumors, including primary patient specimens. In addition, we show that this approach can be used to identify previously uncharacterized oncoproteins and mechanisms, potentially leading to new targeted therapies. We further show that the abundance of the PU-H71-enriched Hsp90 species, which is not dictated by Hsp90 expression alone, is predictive of the cells sensitivity to Hsp90 inhibition.


Bioorganic & Medicinal Chemistry | 2011

Design, synthesis, and evaluation of small molecule Hsp90 probes

Tony Taldone; Danuta Zatorska; Pallav D. Patel; Hongliang Zong; Anna Rodina; James H. Ahn; Kamalika Moulick; Monica L. Guzman; Gabriela Chiosis

A number of compounds from different chemical classes are known to bind competitively to the ATP-pocket of Hsp90 and inhibit its chaperone function. The natural product geldanamycin was the first reported inhibitor of Hsp90 and since then synthetic inhibitors from purine, isoxazole and indazol-4-one chemical classes have been discovered and are currently or soon to be in clinical trials for the treatment of cancer. In spite of a similar binding mode to Hsp90, distinct biological profiles were demonstrated among these molecules, both in vitro and in vivo. To better understand the molecular basis for these dissimilarities, we report here the synthesis of chemical tools for three Hsp90 inhibitor classes. These agents will be useful for probing tumor-by-tumor the Hsp90 complexes isolated by specific inhibitors. Such information will lead to better understanding of tumor specific molecular markers to aid in their clinical development. It will also help to elucidate the molecular basis for the biological differences observed among Hsp90 inhibitors.


Journal of Biomolecular Screening | 2007

High-Throughput Screening Fluorescence Polarization Assay for Tumor-Specific Hsp90

Yuhong Du; Kamalika Moulick; Anna Rodina; Julia Aguirre; Sara J. Felts; Raymond Dingledine; Haian Fu; Gabriela Chiosis

Heat shock protein 90 (Hsp90) is a molecular chaperone that has emerged as an important target in cancer and several other diseases, such as neurodegenerative diseases, nerve injuries, inflammation, and infection. Discovery of novel agents that inhibit Hsp90 and have druglike properties is therefore a major focus in several academic and industrial laboratories. In this study, the authors describe the development and optimization in a 384-well format of a novel assay for the identification of Hsp90 inhibitors using fluorescence polarization, which measures competitive binding of red-shifted fluorescently labeled geldanamycin (GM-cy3B) to Hsp90 found in the NCI-N417 small-cell lung carcinoma cells. The authors demonstrate that GMcy3B binds with high affinity and specificity to cellular Hsp90. The assay results in excellent signal-to-noise ratios (>10) and Z′ values (>0.75) at tracer concentrations greater than 4 nM and 1 µg/well of total NCI-N417 protein, indicating a robust assay. It also equilibrates after 5 h of incubation at room temperature and remains stable for up to 24 h. Furthermore, it is a simple mix-and-read format that is cost-effective and uses only low amounts of fluorophore and cell lysates. A study using more than 15,000 compounds from the National Institutes of Health Molecular Libraries Screening Center Network was performed to validate its performance in a high-throughput screening format. (Journal of Biomolecular Screening 2007:915-924)


Cancer Research | 2012

Abstract 3029: Biochemical evidence towards the existence of an oncogenic Hsp90 complex

Anna Rodina; Kamalika Moulick; James H. Ahn; Hongliang Zong; Leandro Cerchietti; Erica Gomes DaGama; Eloisi Caldas-Lopes; Kristin Beebe; Fabiana Perna; Katerina Hatzi; Ly P. Vu; Xinyang Zhao; Danuta Zatorska; Tony Taldone; Peter Smith-Jones; Mary L. Alpaugh; Steven S. Gross; Nagavarakishore Pillarsetty; Thomas Ku; Jason S. Lewis; Steven M. Larson; Ross L. Levine; Hediye Erdjument-Bromage; Monica L. Guzman; Stephen D. Nimer; Ari Melnick; Len Neckers; Gabriela Chiosis

To maintain homeostasis, cells employ intricate molecular machineries comprised of thousands of proteins programmed to execute well-defined functions. Dysregulation of these pathways, through protein mis-expression or mutation, provides biological advantages that confer the malignant phenotype. At the molecular level, this requires cells to invest energy in maintaining the stability and function of these proteins, and for this reason cancer cells co-opt molecular chaperones, including Hsp90. Hsp90 is recognized to play important roles in maintaining the transformed phenotype - the chaperone and its associated co-chaperones assist in the correct folding of cellular proteins, collectively referred to as “client proteins,” many of which are effectors of signal transduction pathways controlling cell growth, differentiation, the DNA damage response, and cell survival. Tumor cell addiction to these proteins (i.e. through mutations, aberrant expression, improper cellular translocation, etc) thus makes them critically reliant on Hsp90. While Hsp90 is expressed in all cells and tissues, it was shown that tumors preferentially contain Hsp90 that is in a higher order multi-chaperone complex with high affinity for certain Hsp90 inhibitors, while normal tissues harbor a latent, uncomplexed Hsp90 that has low affinity for these inhibitors. We here extend this model and propose that Hsp90 forms biochemically distinct complexes in cancer cells. In this view, a major fraction of cancer cell Hsp90 retains “house keeping” chaperone functions similar to normal cells, whereas a functionally distinct Hsp90 pool enriched or expanded in cancer cells specifically interacts with oncogenic proteins required to maintain tumor cell survival. Perhaps this Hsp90 fraction represents a cell stress specific form of chaperone complex that is expanded and constitutively maintained in the tumor cell context. Our data suggest that it may execute functions necessary to maintain the malignant phenotype. One such role is to regulate the folding of mutated (i.e. mB-Raf) or chimeric proteins (i.e. Bcr-Abl). We here also present experimental evidence for an additional role; that is, to facilitate scaffolding and complex formation of molecules involved in aberrantly activated signaling complexes. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 3029. doi:1538-7445.AM2012-3029


Molecular Cancer Therapeutics | 2017

Combined Inhibition of NEDD8-Activating Enzyme and mTOR Suppresses NF2 Loss-Driven Tumorigenesis

Jonathan Cooper; Qingwen Xu; Lu Zhou; Milica Pavlovic; Virginia Ojeda; Kamalika Moulick; Elisa de Stanchina; John T. Poirier; Marjorie G. Zauderer; Charles M. Rudin; Matthias A. Karajannis; C. Oliver Hanemann; Filippo G. Giancotti

Inactivation of NF2/Merlin causes the autosomal-dominant cancer predisposition syndrome familial neurofibromatosis type 2 (NF2) and contributes to the development of malignant pleural mesothelioma (MPM). To develop a targeted therapy for NF2-mutant tumors, we have exploited the recent realization that Merlin loss drives tumorigenesis by activating the E3 ubiquitin ligase CRL4DCAF1, thereby inhibiting the Hippo pathway component Lats. Here, we show that MLN4924, a NEDD8-activating enzyme (NAE) inhibitor, suppresses CRL4DCAF1 and attenuates activation of YAP in NF2-mutant tumor cells. In addition, MLN4924 sensitizes MPM to traditional chemotherapy, presumably as a result of collateral inhibition of cullin-RING ubiquitin ligases (CRL) involved in DNA repair. However, even in combination with chemotherapy, MLN4924 does not exhibit significant preclinical activity. Further analysis revealed that depletion of DCAF1 or treatment with MLN4924 does not affect mTOR hyperactivation in NF2-mutant tumor cells, suggesting that loss of Merlin activates mTOR independently of CRL4DCAF1. Intriguingly, combining MLN4924 with the mTOR/PI3K inhibitor GDC-0980 suppresses the growth of NF2-mutant tumor cells in vitro as well as in mouse and patient-derived xenografts. These results provide preclinical rationale for the use of NAE inhibitors in combination with mTOR/PI3K inhibitors in NF2-mutant tumors. Mol Cancer Ther; 16(8); 1693–704. ©2017 AACR.


Assay and Drug Development Technologies | 2011

Design of a Flexible Cell-Based Assay for the Evaluation of Heat Shock Protein 70 Expression Modulators

James H. Ahn; Wenjie Luo; Joungnam Kim; Anna Rodina; Cristina C. Clement; Julia Aguirre; Weilin Sun; Yanlong Kang; Ronnie Maharaj; Kamalika Moulick; Danuta Zatorska; Malgorzata Kokoszka; Jeffrey L. Brodsky; Gabriela Chiosis

Heat shock protein 70 (Hsp70) is a chaperone protein that helps protect against cellular stress, a function that may be co-opted to fight human diseases. In particular, the upregulation of Hsp70 can suppress the neurotoxicity of misfolded proteins, suggesting possible therapeutic strategies in neurodegenerative diseases. Alternatively, in cancer cells where high levels of Hsp70 inhibit both intrinsic and extrinsic apoptotic pathways, a reduction in Hsp70 levels may induce apoptosis. To evaluate and identify, in a single assay format, small molecules that induce or inhibit endogenous Hsp70, we have designed and optimized a microtiter assay that relies on whole-cell immunodetection of Hsp70. The assay utilizes a minimal number of neuronal or cancer cells, yet is sufficiently sensitive and reproducible to permit quantitative determinations. We further validated the assay using a panel of Hsp70 modulators. In conclusion, we have developed an assay that is fast, robust, and cost efficient. As such, it can be implemented in most research laboratories. The assay should greatly improve the speed at which novel Hsp70 inducers and inhibitors of expression can be identified and evaluated.


Cancer Research | 2012

Abstract 1263: Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90

Erica M. Gomes-DaGama; Kamalika Moulick; James H. Ahn; Hongliang Zong; Anna Rodina; Leandro Cerchietti; Maria E. Caldas Lopes-Vazquez; Kristin Beebe; Fabiana Perna; Chatzi Katerina; Ly P. Vu; Xinyang Zhao; Danuta Zatorska; Tony Taldone; Peter Smith-Jones; Mary L. Alpaugh; Steven S. Gross; Nagavarakishore Pillarsetty; Thomas Ku; Jason S. Lewis; Steven M. Larson; Levine Ross; Hediye Erdjument-Bromage; Monica L. Guzman; Stephen D. Nimer; Ari Melnick; Len Neckers; Gabriela Chiosis

Most cancers are characterized by multiple molecular alterations, but identification of the key proteins involved in these signaling pathways is currently beyond reach. We show that the inhibitor PU-H71 preferentially targets tumor-enriched Hsp90 complexes and affinity captures Hsp90-dependent oncogenic client proteins. We have used PU-H71 affinity capture to design a proteomic approach that, when combined with bioinformatic pathway analysis, identifies dysregulated signaling networks and key oncoproteins in chronic myeloid leukemia. The identified interactome overlaps with the well-characterized altered proteome in this cancer, indicating that this method can provide global insights into the biology of individual tumors, including primary patient specimens. In addition, we show that this approach can be used to identify previously uncharacterized oncoproteins and mechanisms, potentially leading to new targeted therapies. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 1263. doi:1538-7445.AM2012-1263


Nature Chemical Biology | 2007

Selective compounds define Hsp90 as a major inhibitor of apoptosis in small-cell lung cancer.

Anna Rodina; Maria Vilenchik; Kamalika Moulick; Julia Aguirre; Joungnam Kim; Anne C. Chiang; Julie Litz; Cristina C. Clement; Yanlong Kang; Yuhong She; Nian Wu; Sara J. Felts; Peter Wipf; Joan Massagué; Xuejun Jiang; Jeffrey L. Brodsky; Geoffrey W. Krystal; Gabriela Chiosis

Collaboration


Dive into the Kamalika Moulick's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

James H. Ahn

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Julia Aguirre

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Danuta Zatorska

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Joungnam Kim

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Tony Taldone

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cristina C. Clement

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge