Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Tony Taldone is active.

Publication


Featured researches published by Tony Taldone.


Cell Stem Cell | 2013

Human iPSC-Based Modeling of Late-Onset Disease via Progerin-Induced Aging

Justine Miller; Yosif Ganat; Sarah Kishinevsky; Robert L. Bowman; Becky Liu; Edmund Y. Tu; Pankaj K. Mandal; Elsa Vera; Jae-won Shim; Sonja Kriks; Tony Taldone; Noemi Fusaki; Mark J. Tomishima; Dimitri Krainc; Teresa A. Milner; Derrick J. Rossi; Lorenz Studer

Reprogramming somatic cells to induced pluripotent stem cells (iPSCs) resets their identity back to an embryonic age and, thus, presents a significant hurdle for modeling late-onset disorders. In this study, we describe a strategy for inducing aging-related features in human iPSC-derived lineages and apply it to the modeling of Parkinsons disease (PD). Our approach involves expression of progerin, a truncated form of lamin A associated with premature aging. We found that expression of progerin in iPSC-derived fibroblasts and neurons induces multiple aging-related markers and characteristics, including dopamine-specific phenotypes such as neuromelanin accumulation. Induced aging in PD iPSC-derived dopamine neurons revealed disease phenotypes that require both aging and genetic susceptibility, such as pronounced dendrite degeneration, progressive loss of tyrosine hydroxylase (TH) expression, and enlarged mitochondria or Lewy-body-precursor inclusions. Thus, our study suggests that progerin-induced aging can be used to reveal late-onset age-related disease features in hiPSC-based disease models.


Biochimica et Biophysica Acta | 2012

Advances in the clinical development of heat shock protein 90 (Hsp90) inhibitors in cancers

Komal Jhaveri; Tony Taldone; Shanu Modi; Gabriela Chiosis

Hsp90 is an ATP dependent molecular chaperone protein which integrates multiple oncogenic pathways. As such, Hsp90 inhibition is a promising anti-cancer strategy. Several inhibitors that act on Hsp90 by binding to its N-terminal ATP pocket have entered clinical evaluation. Robust pre-clinical data suggested anti-tumor activity in multiple cancer types. Clinically, encouraging results have been demonstrated in melanoma, acute myeloid leukemia, castrate refractory prostate cancer, non-small cell lung carcinoma and multiple myeloma. In breast cancer, proof-of-concept was demonstrated by first generation Hsp90 inhibitors in combination with trastuzumab mainly in human epidermal growth factor receptor 2 (HER2)+metastatic breast cancer. There are a multitude of second generation Hsp90 inhibitors currently under investigation. To date, however, there is no FDA approved Hsp90 inhibitor nor standardized assay to ascertain Hsp90 inhibition. This review summarizes the current status of both first and second generation Hsp90 inhibitors based on their chemical classification and stage of clinical development. It also discusses the pharmacodynamic assays currently implemented in clinic as well as other novel strategies aimed at enhancing the effectiveness of Hsp90 inhibitors. Ultimately, these efforts will aid in maximizing the full potential of this class of agents. This article is part of a Special Issue entitled: Heat Shock Protein 90 (HSP90).


Current Opinion in Pharmacology | 2008

Targeting Hsp90: small-molecule inhibitors and their clinical development

Tony Taldone; Alexander Gozman; Ronnie Maharaj; Gabriela Chiosis

The Hsp90 multichaperone complex has important roles in the development and progression of malignant transformation. Several small-molecule inhibitors of Hsp90 of diverse chemotypes have shown potent antitumor activity in a wide-range of malignancies, and are currently in clinical or late-stage preclinical investigation. This review intends to update the reader on advances made over the past two years in the clinical development of Hsp90 inhibitors in advanced cancers. It will refer to the two 17-AAG formulations, tanespimycin and IPI-504, and to synthetic small molecules, among which are the purine-scaffold Hsp90 inhibitor CNF2024/BIIB021, the isoxazole derivative VER-52296/NVP-AUY922, and the carbazol-4-one benzamide derivative SNX-5422, and will present our current knowledge on their clinical performance.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Hsp90 inhibitor PU-H71, a multimodal inhibitor of malignancy, induces complete responses in triple-negative breast cancer models

Eloisi Caldas-Lopes; Leandro Cerchietti; James H. Ahn; Cristina C. Clement; Ana I. Robles; Anna Rodina; Kamalika Moulick; Tony Taldone; Alexander Gozman; Yunke Guo; Nian Wu; Elisa de Stanchina; Julie White; Steven S. Gross; Yuliang Ma; Lyuba Varticovski; Ari Melnick; Gabriela Chiosis

Triple-negative breast cancers (TNBCs) are defined by a lack of expression of estrogen, progesterone, and HER2 receptors. Because of the absence of identified targets and targeted therapies, and due to a heterogeneous molecular presentation, treatment guidelines for patients with TNBC include only conventional chemotherapy. Such treatment, while effective for some, leaves others with high rates of early relapse and is not curative for any patient with metastatic disease. Here, we demonstrate that these tumors are sensitive to the heat shock protein 90 (Hsp90) inhibitor PU-H71. Potent and durable anti-tumor effects in TNBC xenografts, including complete response and tumor regression, without toxicity to the host are achieved with this agent. Notably, TNBC tumors respond to retreatment with PU-H71 for several cycles extending for over 5 months without evidence of resistance or toxicity. Through a proteomics approach, we show that multiple oncoproteins involved in tumor proliferation, survival, and invasive potential are in complex with PU-H71-bound Hsp90 in TNBC. PU-H71 induces efficient and sustained downregulation and inactivation, both in vitro and in vivo, of these proteins. Among them, we identify downregulation of components of the Ras/Raf/MAPK pathway and G2-M phase to contribute to its anti-proliferative effect, degradation of activated Akt and Bcl-xL to induce apoptosis, and inhibition of activated NF-κB, Akt, ERK2, Tyk2, and PKC to reduce TNBC invasive potential. The results identify Hsp90 as a critical and multimodal target in this most difficult to treat breast cancer subtype and support the use of the Hsp90 inhibitor PU-H71 for clinical trials involving patients with TNBC.


Nature Chemical Biology | 2011

Affinity-based proteomics reveal cancer-specific networks coordinated by Hsp90

Kamalika Moulick; James H. Ahn; Hongliang Zong; Anna Rodina; Leandro Cerchietti; Erica Gomes DaGama; Eloisi Caldas-Lopes; Kristin Beebe; Fabiana Perna; Katerina Hatzi; Ly P. Vu; Xinyang Zhao; Danuta Zatorska; Tony Taldone; Peter Smith-Jones; Mary L. Alpaugh; Steven S. Gross; Nagavarakishore Pillarsetty; Thomas Ku; Jason S. Lewis; Steven M. Larson; Ross L. Levine; Hediye Erdjument-Bromage; Monica L. Guzman; Stephen D. Nimer; Ari Melnick; Len Neckers; Gabriela Chiosis

Most cancers are characterized by multiple molecular alterations, but identification of the key proteins involved in these signaling pathways is currently beyond reach. We show that the inhibitor PU-H71 preferentially targets tumor-enriched Hsp90 complexes and affinity captures Hsp90-dependent oncogenic client proteins. We have used PU-H71 affinity capture to design a proteomic approach that, when combined with bioinformatic pathway analysis, identifies dysregulated signaling networks and key oncoproteins in chronic myeloid leukemia. The identified interactome overlaps with the well-characterized altered proteome in this cancer, indicating that this method can provide global insights into the biology of individual tumors, including primary patient specimens. In addition, we show that this approach can be used to identify previously uncharacterized oncoproteins and mechanisms, potentially leading to new targeted therapies. We further show that the abundance of the PU-H71-enriched Hsp90 species, which is not dictated by Hsp90 expression alone, is predictive of the cells sensitivity to Hsp90 inhibition.


Journal of Clinical Investigation | 2010

HSP90 is a therapeutic target in JAK2-dependent myeloproliferative neoplasms in mice and humans

Sachie Marubayashi; Priya Koppikar; Tony Taldone; Omar Abdel-Wahab; Nathan West; Neha Bhagwat; Eloisi Caldas-Lopes; Kenneth N. Ross; Mithat Gonen; Alex Gozman; James H. Ahn; Anna Rodina; Ouathek Ouerfelli; Guangbin Yang; Cyrus V. Hedvat; James E. Bradner; Gabriela Chiosis; Ross L. Levine

JAK2 kinase inhibitors were developed for the treatment of myeloproliferative neoplasms (MPNs), following the discovery of activating JAK2 mutations in the majority of patients with MPN. However, to date JAK2 inhibitor treatment has shown limited efficacy and apparent toxicities in clinical trials. We report here that an HSP90 inhibitor, PU-H71, demonstrated efficacy in cell line and mouse models of the MPN polycythemia vera (PV) and essential thrombocytosis (ET) by disrupting JAK2 protein stability. JAK2 physically associated with both HSP90 and PU-H71 and was degraded by PU-H71 treatment in vitro and in vivo, demonstrating that JAK2 is an HSP90 chaperone client. PU-H71 treatment caused potent, dose-dependent inhibition of cell growth and signaling in JAK2 mutant cell lines and in primary MPN patient samples. PU-H71 treatment of mice resulted in JAK2 degradation, inhibition of JAK-STAT signaling, normalization of peripheral blood counts, and improved survival in MPN models at doses that did not degrade JAK2 in normal tissues or cause substantial toxicity. Importantly, PU-H71 treatment also reduced the mutant allele burden in mice. These data establish what we believe to be a novel therapeutic rationale for HSP90 inhibition in the treatment of JAK2-dependent MPN.


Bioorganic & Medicinal Chemistry | 2009

Discovery and development of heat shock protein 90 inhibitors

Tony Taldone; Weilin Sun; Gabriela Chiosis

Heat shock protein 90 (Hsp90) is an important target in cancer because of its role in maintaining transformation and has recently become the focus of several drug discovery and development efforts. While compounds with different modes of action are known, the focus of this review is on those classes of compounds which inhibit Hsp90 by binding to the N-terminal ATP pocket. These include natural product inhibitors such as geldanamycin and radicicol and synthetic inhibitors comprised of purines, pyrazoles, isoxazoles and other scaffolds. The synthetic inhibitors have been discovered either by structure-based design, high throughput screening and more recently using fragment-based design and virtual screening techniques. This review will discuss the discovery of these different classes, as well as their development as potential clinical agents.


Molecular Neurodegeneration | 2010

Heat shock protein 90 in neurodegenerative diseases.

Wenjie Luo; Weilin Sun; Tony Taldone; Anna Rodina; Gabriela Chiosis

Hsp90 is a molecular chaperone with important roles in regulating pathogenic transformation. In addition to its well-characterized functions in malignancy, recent evidence from several laboratories suggests a role for Hsp90 in maintaining the functional stability of neuronal proteins of aberrant capacity, whether mutated or over-activated, allowing and sustaining the accumulation of toxic aggregates. In addition, Hsp90 regulates the activity of the transcription factor heat shock factor-1 (HSF-1), the master regulator of the heat shock response, mechanism that cells use for protection when exposed to conditions of stress. These biological functions therefore propose Hsp90 inhibition as a dual therapeutic modality in neurodegenerative diseases. First, by suppressing aberrant neuronal activity, Hsp90 inhibitors may ameliorate protein aggregation and its associated toxicity. Second, by activation of HSF-1 and the subsequent induction of heat shock proteins, such as Hsp70, Hsp90 inhibitors may redirect neuronal aggregate formation, and protect against protein toxicity. This mini-review will summarize our current knowledge on Hsp90 in neurodegeneration and will focus on the potential beneficial application of Hsp90 inhibitors in neurodegenerative diseases.


Carbohydrate Research | 2008

α-Glucosidase inhibitory activity of Syzygium cumini (Linn.) Skeels seed kernel in vitro and in Goto–Kakizaki (GK) rats

Jayantrao Shinde; Tony Taldone; Michael A. Barletta; Naveen Kunaparaju; Bo Hu; Sunil Kumar; Jessica Placido; S. William Zito

Syzygium cumini seed kernel extracts were evaluated for the inhibition of alpha-glucosidase from mammalian (rat intestine), bacterial (Bacillus stearothermophilus), and yeast (Saccharomyces cerevisiae, bakers yeast). In vitro studies using the mammalian alpha-glucosidase from rat intestine showed the extracts to be more effective in inhibiting maltase when compared to the acarbose control. Since acarbose is inactive against both the bacterial and the yeast enzymes, the extracts were compared to 1-deoxynojirimycin. We found all extracts to be more potent against alpha-glucosidase derived from B. stearothermophilus than that against the enzymes from either bakers yeast or rat intestine. In an in vivo study using Goto-Kakizaki (GK) rats, the acetone extract was found to be a potent inhibitor of alpha-glucosidase hydrolysis of maltose when compared to untreated control animals. Therefore, these results point to the inhibition of alpha-glucosidase as a possible mechanism by which this herb acts as an anti-diabetic agent.


PLOS ONE | 2010

Measuring the Pharmacodynamic Effects of a Novel Hsp90 Inhibitor on HER2/neu Expression in Mice Using 89Zr-DFO-Trastuzumab

Jason P. Holland; Eloisi Caldas-Lopes; Vadim Divilov; Valerie A. Longo; Tony Taldone; Danuta Zatorska; Gabriela Chiosis; Jason S. Lewis

Background The positron-emitting radionuclide 89Zr (t 1/2 = 3.17 days) was used to prepare 89Zr-radiolabeled trastuzumab for use as a radiotracer for characterizing HER2/neu-positive breast tumors. In addition, pharmacodynamic studies on HER2/neu expression levels in response to therapeutic doses of PU-H71 (a specific inhibitor of heat-shock protein 90 [Hsp90]) were conducted. Methodology/Principal Findings Trastuzumab was functionalized with desferrioxamine B (DFO) and radiolabeled with [89Zr]Zr-oxalate at room temperature using modified literature methods. ImmunoPET and biodistribution experiments in female, athymic nu/nu mice bearing sub-cutaneous BT-474 (HER2/neu positive) and/or MDA-MB-468 (HER2/neu negative) tumor xenografts were conducted. The change in 89Zr-DFO-trastuzumab tissue uptake in response to high- and low-specific-activity formulations and co-administration of PU-H71 was evaluated by biodistribution studies, Western blot analysis and immunoPET. 89Zr-DFO-trastuzumab radiolabeling proceeded in high radiochemical yield and specific-activity 104.3±2.1 MBq/mg (2.82±0.05 mCi/mg of mAb). In vitro assays demonstrated >99% radiochemical purity with an immunoreactive fraction of 0.87±0.07. In vivo biodistribution experiments revealed high specific BT-474 uptake after 24, 48 and 72 h (64.68±13.06%ID/g; 71.71±10.35%ID/g and 85.18±11.10%ID/g, respectively) with retention of activity for over 120 h. Pre-treatment with PU-H71 was followed by biodistribution studies and immunoPET of 89Zr-DFO-trastuzumab. Expression levels of HER2/neu were modulated during the first 24 and 48 h post-administration (29.75±4.43%ID/g and 41.42±3.64%ID/g, respectively). By 72 h radiotracer uptake (73.64±12.17%ID/g) and Western blot analysis demonstrated that HER2/neu expression recovered to baseline levels. Conclusions/Significance The results indicate that 89Zr-DFO-trastuzumab provides quantitative and highly-specific delineation of HER2/neu positive tumors, and has potential to be used to measure the efficacy of long-term treatment with Hsp90 inhibitors, like PU-H71, which display extended pharmacodynamic profiles.

Collaboration


Dive into the Tony Taldone's collaboration.

Top Co-Authors

Avatar

Gabriela Chiosis

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Anna Rodina

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Hardik J. Patel

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Pallav D. Patel

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Yanlong Kang

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Alexander Gozman

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danuta Zatorska

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Hediye Erdjument-Bromage

Memorial Sloan Kettering Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge