Kami Ahmad
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kami Ahmad.
Molecular Cell | 2002
Kami Ahmad; Steven Henikoff
Two very similar H3 histones-differing at only four amino acid positions-are produced in Drosophila cells. Here we describe a mechanism of chromatin regulation whereby the variant H3.3 is deposited at particular loci, including active rDNA arrays. While the major H3 is incorporated strictly during DNA replication, amino acid changes toward H3.3 allow replication-independent (RI) deposition. In contrast to replication-coupled (RC) deposition, RI deposition does not require the N-terminal tail. H3.3 is the exclusive substrate for RI deposition, and its counterpart is the only substrate retained in yeast. RI substitution of H3.3 provides a mechanism for the immediate activation of genes that are silenced by histone modification. Inheritance of newly deposited nucleosomes may then mark sites as active loci.
Science | 2010
Sushmita Roy; Jason Ernst; Peter V. Kharchenko; Pouya Kheradpour; Nicolas Nègre; Matthew L. Eaton; Jane M. Landolin; Christopher A. Bristow; Lijia Ma; Michael F. Lin; Stefan Washietl; Bradley I. Arshinoff; Ferhat Ay; Patrick E. Meyer; Nicolas Robine; Nicole L. Washington; Luisa Di Stefano; Eugene Berezikov; Christopher D. Brown; Rogerio Candeias; Joseph W. Carlson; Adrian Carr; Irwin Jungreis; Daniel Marbach; Rachel Sealfon; Michael Y. Tolstorukov; Sebastian Will; Artyom A. Alekseyenko; Carlo G. Artieri; Benjamin W. Booth
From Genome to Regulatory Networks For biologists, having a genome in hand is only the beginning—much more investigation is still needed to characterize how the genome is used to help to produce a functional organism (see the Perspective by Blaxter). In this vein, Gerstein et al. (p. 1775) summarize for the Caenorhabditis elegans genome, and The modENCODE Consortium (p. 1787) summarize for the Drosophila melanogaster genome, full transcriptome analyses over developmental stages, genome-wide identification of transcription factor binding sites, and high-resolution maps of chromatin organization. Both studies identified regions of the nematode and fly genomes that show highly occupied targets (or HOT) regions where DNA was bound by more than 15 of the transcription factors analyzed and the expression of related genes were characterized. Overall, the studies provide insights into the organization, structure, and function of the two genomes and provide basic information needed to guide and correlate both focused and genome-wide studies. The Drosophila modENCODE project demonstrates the functional regulatory network of flies. To gain insight into how genomic information is translated into cellular and developmental programs, the Drosophila model organism Encyclopedia of DNA Elements (modENCODE) project is comprehensively mapping transcripts, histone modifications, chromosomal proteins, transcription factors, replication proteins and intermediates, and nucleosome properties across a developmental time course and in multiple cell lines. We have generated more than 700 data sets and discovered protein-coding, noncoding, RNA regulatory, replication, and chromatin elements, more than tripling the annotated portion of the Drosophila genome. Correlated activity patterns of these elements reveal a functional regulatory network, which predicts putative new functions for genes, reveals stage- and tissue-specific regulators, and enables gene-expression prediction. Our results provide a foundation for directed experimental and computational studies in Drosophila and related species and also a model for systematic data integration toward comprehensive genomic and functional annotation.
Proceedings of the National Academy of Sciences of the United States of America | 2002
Kami Ahmad; Steven Henikoff
Histone variants have been known for 30 years, but their functions and the mechanism of their deposition are still largely unknown. Drosophila has three versions of histone H3. H3 packages the bulk genome, H3.3 marks active chromatin and may be essential for gene regulation, and Cid is the characteristic structural component of centromeric chromatin. We have characterized the properties of these histones by using a Drosophila cell-line system that allows precise analysis of both DNA replication and histone deposition. The deposition of H3 is restricted to replicating DNA. In striking contrast, H3.3 and Cid deposit throughout the cell cycle. Deposition of H3.3 occurs without any corresponding DNA replication. To confirm that the deposition of Cid is also replication-independent (RI), we examined centromere replication in cultured cells and neuroblasts. We found that centromeres replicate out of phase with heterochromatin and display replication patterns that may limit H3 deposition. This confirms that both variants undergo RI deposition, but at different locations in the nucleus. How variant histones accomplish RI deposition is unknown, and raises basic questions about the stability of nucleosomes, the machinery that accomplishes nucleosome assembly, and the functional organization of the nucleus. The different in vivo properties of H3, H3.3, and Cid set the stage for identifying the mechanisms by which they are differentially targeted. Here we suggest that local effects of “open” chromatin and broader effects of nuclear organization help to guide the two different H3 variants to their target sites.
PLOS Genetics | 2010
Nicolas Nègre; Christopher D. Brown; Parantu K. Shah; Pouya Kheradpour; Carolyn A. Morrison; Jorja G. Henikoff; Xin Feng; Kami Ahmad; Steven Russell; Robert A. H. White; Lincoln Stein; Steven Henikoff; Manolis Kellis; Kevin P. White
Insulators are DNA sequences that control the interactions among genomic regulatory elements and act as chromatin boundaries. A thorough understanding of their location and function is necessary to address the complexities of metazoan gene regulation. We studied by ChIP–chip the genome-wide binding sites of 6 insulator-associated proteins—dCTCF, CP190, BEAF-32, Su(Hw), Mod(mdg4), and GAF—to obtain the first comprehensive map of insulator elements in Drosophila embryos. We identify over 14,000 putative insulators, including all classically defined insulators. We find two major classes of insulators defined by dCTCF/CP190/BEAF-32 and Su(Hw), respectively. Distributional analyses of insulators revealed that particular sub-classes of insulator elements are excluded between cis-regulatory elements and their target promoters; divide differentially expressed, alternative, and divergent promoters; act as chromatin boundaries; are associated with chromosomal breakpoints among species; and are embedded within active chromatin domains. Together, these results provide a map demarcating the boundaries of gene regulatory units and a framework for understanding insulator function during the development and evolution of Drosophila.
Epigenetics & Chromatin | 2012
Paul B. Talbert; Kami Ahmad; Geneviève Almouzni; Juan Ausió; Frédéric Berger; Prem L. Bhalla; William M. Bonner; W. Zacheus Cande; Brian P. Chadwick; Simon W. L. Chan; George A.M. Cross; Liwang Cui; Stefan Dimitrov; Detlef Doenecke; José M. Eirín-López; Martin A. Gorovsky; Sandra B. Hake; Barbara A. Hamkalo; Sarah Holec; Steven E. Jacobsen; Kinga Kamieniarz; Saadi Khochbin; Andreas G. Ladurner; David Landsman; John Latham; Benjamin Loppin; Harmit S. Malik; William F. Marzluff; John R. Pehrson; Jan Postberg
Histone variants are non-allelic protein isoforms that play key roles in diversifying chromatin structure. The known number of such variants has greatly increased in recent years, but the lack of naming conventions for them has led to a variety of naming styles, multiple synonyms and misleading homographs that obscure variant relationships and complicate database searches. We propose here a unified nomenclature for variants of all five classes of histones that uses consistent but flexible naming conventions to produce names that are informative and readily searchable. The nomenclature builds on historical usage and incorporates phylogenetic relationships, which are strong predictors of structure and function. A key feature is the consistent use of punctuation to represent phylogenetic divergence, making explicit the relationships among variant subtypes that have previously been implicit or unclear. We recommend that by default new histone variants be named with organism-specific paralog-number suffixes that lack phylogenetic implication, while letter suffixes be reserved for structurally distinct clades of variants. For clarity and searchability, we encourage the use of descriptors that are separate from the phylogeny-based variant name to indicate developmental and other properties of variants that may be independent of structure.
Nature | 1999
Brian J. Buchwitz; Kami Ahmad; Landon L. Moore; Mark B. Roth; Steven Henikoff
The segregation of a chromosome during mitosis is mediated by a region of the chromosome known as the centromere, which organizes the kinetochore, to which the spindle microtubules attach. Many organisms have monocentric chromosomes, in which the centromeres map to single loci, whereas others, including the nematode Caenorhabditis elegans, have holocentric chromosomes, in which non-localized kinetochores extend along the length of each chromosome. The centromeres of monocentric chromosomes use specialized nucleosomes containing histone-H3-like proteins (known as CENP-A in mammals and Cse4 in the yeast Saccharomyces cerevisiae). Here we show that a C. elegans histone-H3-like protein is necessary for the proper segregation of chromosomes during mitosis and identifies the centromeres of these holocentric chromosomes, indicating that both holocentric and monocentric chromosomes use centromeric histone-H3-like proteins.
Nature | 1999
Brian J. Buchwitz; Kami Ahmad; Landon L. Moore; Mark B. Roth; Steven Henikoff
The segregation of a chromosome during mitosis is mediated by a region of the chromosome known as the centromere, which organizes the kinetochore, to which the spindle microtubules attach. Many organisms have monocentric chromosomes, in which the centromeres map to single loci, whereas others, including the nematode Caenorhabditis elegans, have holocentric chromosomes, in which non-localized kinetochores extend along the length of each chromosome. The centromeres of monocentric chromosomes use specialized nucleosomes containing histone-H3-like proteins (known as CENP-A in mammals and Cse4 in the yeast Saccharomyces cerevisiae). Here we show that a C. elegans histone-H3-like protein is necessary for the proper segregation of chromosomes during mitosis and identifies the centromeres of these holocentric chromosomes, indicating that both holocentric and monocentric chromosomes use centromeric histone-H3-like proteins.
Cell | 2001
Kami Ahmad; Steven Henikoff
Variegation is a common feature of gene silencing phenomena, yet the basis for stochastic on/off expression is unknown. We used a conditional system that allows probing of heterochromatin at a reporter GFP gene by altering GAL4 transcription factor levels during Drosophila eye development. Surprisingly, the frequency of gene silencing is exquisitely sensitive to GAL4 levels, as though binding site occupancy affects the silenced state. The silent state is plastic, as spontaneous derepression occasionally occurs in both mitotically active and differentiating cells. By simultaneously assaying expression of a nearby gene, we further show that the size of an activated region within heterochromatin is small. We propose that variegation occurs because heterochromatin inhibits the transient exposure of factor binding sites.
Cell | 2002
Kami Ahmad; Steven Henikoff
Current models for epigenetic gene silencing envision a static relationship between histone modifications and transcription. However, evidence for nucleosome mobility and replacement favors a dynamic model that may explain phenomena ranging from variegation to the neural restriction of Rett syndrome.
Current Biology | 2009
Akiko Sakai; Brian E. Schwartz; Sara Goldstein; Kami Ahmad
Changes in chromatin composition accompany cellular differentiation in eukaryotes. Although bulk chromatin is duplicated during DNA replication, replication-independent (RI) nucleosome replacement occurs in transcriptionally active chromatin and during specific developmental transitions where the genome is repackaged. In most animals, replacement uses the conserved H3.3 histone variant, but the functions of this variant have not been defined. Using mutations for the two H3.3 genes in Drosophila, we identify widespread transcriptional defects in H3.3-deficient animals. We show that mutant animals compensate for the lack of H3.3 in two ways: they upregulate the expression of the major histone H3 genes, and they maintain chromatin structure by using H3 protein for RI nucleosome replacement at active genes. Rescue experiments show that increased expression of H3 is sufficient to relieve transcriptional defects. In contrast, H3.3 is essential for male fertility, and germline cells specifically require the histone variant. Defects without H3.3 first occur around meiosis, resulting in a failure to condense, segregate, and reorganize chromatin. Rescue experiments with mutated transgenes demonstrate that H3.3-specific residues involved in RI nucleosome assembly-but not major histone modification sites-are required for male fertility. Our results imply that the H3.3 variant plays an essential role in chromatin transitions in the male germline.