Steven Henikoff
Fred Hutchinson Cancer Research Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Steven Henikoff.
Nature Reviews Genetics | 2006
Andrew P. Feinberg; Rolf Ohlsson; Steven Henikoff
Cancer is widely perceived as a heterogeneous group of disorders with markedly different biological properties, which are caused by a series of clonally selected genetic changes in key tumour-suppressor genes and oncogenes. However, recent data suggest that cancer has a fundamentally common basis that is grounded in a polyclonal epigenetic disruption of stem/progenitor cells, mediated by tumour-progenitor genes. Furthermore, tumour cell heterogeneity is due in part to epigenetic variation in progenitor cells, and epigenetic plasticity together with genetic lesions drives tumour progression. This crucial early role for epigenetic alterations in cancer is in addition to epigenetic alterations that can substitute for genetic variation later in tumour progression. Therefore, non-neoplastic but epigenetically disrupted stem/progenitor cells might be a crucial target for cancer risk assessment and chemoprevention.
Methods in Enzymology | 1987
Steven Henikoff
Publisher Summary This chapter discusses the unidirectional digestion with exonuclease III in deoxyribonucleic acid (DNA) sequence analysis. The chapter describes a rapid strategy and a simplified version related to the uniform rate at which Escherichia coli exonuclease III can digest DNA from one end. This strategy can be used with single-stranded phage, plasmid, and synthetic RNA-plasmid systems. The reagents that are used are inexpensive and readily available. The chapter illustrates a figure that outlines the steps involved in generating the ordered sets of deletion breakpoints for DNA sequencing. The method is based on a series of enzymatic treatments of a segment of DNA cloned into a suitable vector. Cloning efficiencies are sufficiently high that standard Ca2+ treated cells are adequate for transfection or transformation. Exonuclease III is an incompletely processive nuclease. The rate of exonuclease III is very sensitive to the temperature of incubation. The procedure described in the chapter has several advantages. Most importantly, it yields cloned breakpoints at high efficiency that are tightly clustered around a particular point in the sequence, greatly reducing the tedious screening steps required to fill in gaps in the sequence.
Nature Genetics | 2004
Kiyotaka Nagaki; Zhukuan Cheng; Shu Ouyang; Paul B. Talbert; Mary Kim; Kristine M. Jones; Steven Henikoff; C. Robin Buell; Jiming Jiang
Centromeres are the last frontiers of complex eukaryotic genomes, consisting of highly repetitive sequences that resist mapping, cloning and sequencing. The centromere of rice Chromosome 8 (Cen8) has an unusually low abundance of highly repetitive satellite DNA, which allowed us to determine its sequence. A region of ∼750 kb in Cen8 binds rice CENH3, the centromere-specific H3 histone. CENH3 binding is contained within a larger region that has abundant dimethylation of histone H3 at Lys9 (H3-Lys9), consistent with Cen8 being embedded in heterochromatin. Fourteen predicted and at least four active genes are interspersed in Cen8, along with CENH3 binding sites. The retrotransposons located in and outside of the CENH3 binding domain have similar ages and structural dynamics. These results suggest that Cen8 may represent an intermediate stage in the evolution of centromeres from genic regions, as in human neocentromeres, to fully mature centromeres that accumulate megabases of homogeneous satellite arrays.
Nucleic Acids Research | 2003
Timothy M. Rose; Jorja G. Henikoff; Steven Henikoff
We have developed a new primer design strategy for PCR amplification of distantly related gene sequences based on consensus-degenerate hybrid oligonucleotide primers (CODEHOPs). An interactive program has been written to design CODEHOP PCR primers from conserved blocks of amino acids within multiply-aligned protein sequences. Each CODEHOP consists of a pool of related primers containing all possible nucleotide sequences encoding 3-4 highly conserved amino acids within a 3 degenerate core. A longer 5 non-degenerate clamp region contains the most probable nucleotide predicted for each flanking codon. CODEHOPs are used in PCR amplification to isolate distantly related sequences encoding the conserved amino acid sequence. The primer design software and the CODEHOP PCR strategy have been utilized for the identification and characterization of new gene orthologs and paralogs in different plant, animal and bacterial species. In addition, this approach has been successful in identifying new pathogen species. The CODEHOP designer (http://blocks.fhcrc.org/codehop.html) is linked to BlockMaker and the Multiple Alignment Processor within the Blocks Database World Wide Web (http://blocks.fhcrc.org).
Developmental Cell | 2010
Roger B. Deal; Steven Henikoff
Understanding the production and function of specialized cells during development requires the isolation of individual cell types for analysis, but this is currently a major technical challenge. Here we describe a method for cell type-specific RNA and chromatin profiling that circumvents many of the limitations of current methods for cell isolation. We used in vivo biotin labeling of a nuclear envelope protein in individual cell types followed by affinity isolation of labeled nuclei to measure gene expression and chromatin features of the hair and non-hair cell types of the Arabidopsis root epidermis. We identified hundreds of genes that are preferentially expressed in each cell type and show that genes with the largest expression differences between hair and non-hair cells also show differences between cell types in the trimethylation of histone H3 at lysines 4 and 27. This method should be applicable to any organism that is amenable to transformation.
PLOS Genetics | 2010
Nicolas Nègre; Christopher D. Brown; Parantu K. Shah; Pouya Kheradpour; Carolyn A. Morrison; Jorja G. Henikoff; Xin Feng; Kami Ahmad; Steven Russell; Robert A. H. White; Lincoln Stein; Steven Henikoff; Manolis Kellis; Kevin P. White
Insulators are DNA sequences that control the interactions among genomic regulatory elements and act as chromatin boundaries. A thorough understanding of their location and function is necessary to address the complexities of metazoan gene regulation. We studied by ChIP–chip the genome-wide binding sites of 6 insulator-associated proteins—dCTCF, CP190, BEAF-32, Su(Hw), Mod(mdg4), and GAF—to obtain the first comprehensive map of insulator elements in Drosophila embryos. We identify over 14,000 putative insulators, including all classically defined insulators. We find two major classes of insulators defined by dCTCF/CP190/BEAF-32 and Su(Hw), respectively. Distributional analyses of insulators revealed that particular sub-classes of insulator elements are excluded between cis-regulatory elements and their target promoters; divide differentially expressed, alternative, and divergent promoters; act as chromatin boundaries; are associated with chromosomal breakpoints among species; and are embedded within active chromatin domains. Together, these results provide a map demarcating the boundaries of gene regulatory units and a framework for understanding insulator function during the development and evolution of Drosophila.
PLOS Biology | 2007
Yamini Dalal; Hongda Wang; Stuart Lindsay; Steven Henikoff
Centromeres, the specialized chromatin structures that are responsible for equal segregation of chromosomes at mitosis, are epigenetically maintained by a centromere-specific histone H3 variant (CenH3). However, the mechanistic basis for centromere maintenance is unknown. We investigated biochemical properties of CenH3 nucleosomes from Drosophila melanogaster cells. Cross-linking of CenH3 nucleosomes identifies heterotypic tetramers containing one copy of CenH3, H2A, H2B, and H4 each. Interphase CenH3 particles display a stable association of approximately 120 DNA base pairs. Purified centromeric nucleosomal arrays have typical beads-on-a-string appearance by electron microscopy but appear to resist condensation under physiological conditions. Atomic force microscopy reveals that native CenH3-containing nucleosomes are only half as high as canonical octameric nucleosomes are, confirming that the tetrameric structure detected by cross-linking comprises the entire interphase nucleosome particle. This demonstration of stable half-nucleosomes in vivo provides a possible basis for the instability of centromeric nucleosomes that are deposited in euchromatic regions, which might help maintain centromere identity.
Bioinformatics | 1996
Jorja G. Henikoff; Steven Henikoff
Each column of amino acids in a multiple alignment of protein sequences can be represented as a vector of 20 amino acid counts. For alignment and searching applications, the count vector is an imperfect representation of a position, because the observed sequences are an incomplete sample of the full set of related sequences. One general solution to this problem is to model unobserved sequences by adding artificial pseudo-counts to the observed counts. We introduce a simple method for computing pseudo-counts that combines the diversity observed in each alignment position with amino acid substitution probabilities. In extensive empirical tests, this position-based method out-performed other pseudo-count methods and was a substantial improvement over the traditional average score method used for constructing profiles.
PLOS ONE | 2011
Mary Gehring; Victor Missirian; Steven Henikoff
Differential expression of maternally and paternally inherited alleles of a gene is referred to as gene imprinting, a form of epigenetic gene regulation common to flowering plants and mammals. In plants, imprinting primarily occurs in the endosperm, a seed tissue that supports the embryo during its growth and development. Previously, we demonstrated that widespread DNA demethylation at remnants of transposable elements accompanies endosperm development and that a subset of these methylation changes are associated with gene imprinting. Here we assay imprinted gene expression genome-wide by performing high-throughput sequencing of RNA derived from seeds of reciprocal intraspecific crosses. We identify more than 200 loci that exhibit parent-of-origin effects on gene expression in the endosperm, including a large number of transcription factors, hormone biosynthesis and response genes, and genes that encode regulators of epigenetic information, such as methylcytosine binding proteins, histone methyltransferases, and chromatin remodelers. The majority of these genes are partially, rather than completely, imprinted, suggesting that gene dosage regulation is an important aspect of imprinted gene expression.
Methods of Molecular Biology | 2003
Bradley J. Till; Trenton Colbert; Rachel Tompa; Linda C. Enns; Christine A. Codomo; Jessica E. Johnson; Steven H. Reynolds; Jorja G. Henikoff; Elizabeth A. Greene; Michael N. Steine; Luca Comai; Steven Henikoff
Targeting-induced local lesions in genomes (TILLING) is a general strategy for identifying induced point mutations that can be applied to almost any organism. Here, we describe the basic methodology for high-throughput TILLING. Gene segments are amplified using fluorescently tagged primers, and products are denatured and reannealed to form heteroduplexes between the mutated sequence and its wild-type counterpart. These heteroduplexes are substrates for cleavage by the endonuclease CEL I. Following cleavage, products are analyzed on denaturing polyacrylamide gels using the LI-COR DNA analyzer system. High-throughput TILLING has been adopted by the Arabidopsis TILLING Project (ATP) to provide allelic series of point mutations for the general Arabidopsis community.