Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kamil Matulka is active.

Publication


Featured researches published by Kamil Matulka.


Stem Cells | 2009

A complex role for FGF-2 in self-renewal, survival, and adhesion of human embryonic stem cells.

Lívia Eiselleová; Kamil Matulka; Vitezslav Kriz; Michaela Kunová; Zuzana Schmidtová; Jakub Neradil; Boris Tichy; Dana Dvorakova; Šárka Pospíšilová; Aleš Hampl; Petr Dvorak

The transcription program that is responsible for the pluripotency of human ESCs (hESCs) is believed to be comaintained by exogenous fibroblast growth factor‐2 (FGF‐2), which activates FGF receptors (FGFRs) and stimulates the mitogen‐activated protein kinase (MAPK) pathway. However, the same pathway is stimulated by insulin receptors, insulin‐like growth factor 1 receptors, and epidermal growth factor receptors. This mechanism is further complicated by intracrine FGF signals. Thus, the molecular mechanisms by which FGF‐2 promotes the undifferentiated growth of hESCs are unclear. Here we show that, in undifferentiated hESCs, exogenous FGF‐2 stimulated the expression of stem cell genes while suppressing cell death and apoptosis genes. Inhibition of autocrine FGF signaling caused upregulation of differentiation‐related genes and downregulation of stem cell genes. Thus, exogenous FGF‐2 reinforced the pluripotency maintenance program of intracrine FGF‐2 signaling. Consistent with this hypothesis, expression of endogenous FGF‐2 decreased during hESC differentiation and FGF‐2 knockdown‐induced hESC differentiation. In addition, FGF‐2 signaling via FGFR2 activated MAPK kinase/extracellular signal‐regulated kinase and AKT kinases, protected hESC from stress‐induced cell death, and increased hESC adhesion and cloning efficiency. This stimulation of self‐renewal, cell survival, and adhesion by exogenous and endogenous FGF‐2 may synergize to maintain the undifferentiated growth of hESCs. STEM CELLS 2009;27:1847–1857


Stem Cells Translational Medicine | 2013

Adaptation to Robust Monolayer Expansion Produces Human Pluripotent Stem Cells With Improved Viability

Michaela Kunová; Kamil Matulka; Lívia Eiselleová; Anton Salykin; Iva Kubíková; Sergiy Kyrylenko; Aleš Hampl; Petr Dvorak

The generation of human pluripotent stem cells (hPSCs) of sufficient quantity and quality remains a major challenge for biomedical application. Here we present an efficient feeder‐free, high‐density monolayer system in which hPSCs become SSEA‐3‐high and gradually more viable than their feeder‐dependent counterparts without changes attributed to culture adaptation. As a consequence, monolayer hPSCs possess advantages over their counterparts in embryoid body development, teratoma formation, freezing as a single‐cell suspension, and colony‐forming efficiency. Importantly, this monolayer culture system is reversible, preserving the competence of hPSCs to gradually reacquire features of colony growth, if necessary. Therefore, the monolayer culture system is highly suitable for long‐term, large‐scale propagation of hPSCs, which is necessary in drug development and pluripotent stem cell‐based therapies.


Cell Stem Cell | 2013

PTP1B Is an Effector of Activin Signaling and Regulates Neural Specification of Embryonic Stem Cells

Kamil Matulka; Hsuan-Hwai Lin; Hana Hříbková; Dafe Uwanogho; Yuh-Man Sun

During embryogenesis, the Activin/Nodal pathway promotes the mesendodermal lineage and inhibits neural fate. The molecular mechanisms underlying this role of the Activin/Nodal pathway are not clear. In this study, we report a role for protein tyrosine phosphatase 1B (PTP1B) in Activin-mediated early fate decisions during ESC differentiation and show that PTP1B acts as an effector of the Activin pathway to specify mesendodermal or neural fate. We found that the Activin/ALK4 pathway directly recruits PTP1B and stimulates its release from the endoplasmic reticulum through ALK4-mediated cleavage. Subsequently, PTP1B suppresses p-ERK1/2 signaling to inhibit neural specification and promote mesendodermal commitment. These findings suggest that a noncanonical Activin signaling pathway functions in lineage specification of mouse and human embryonic stem cells.


Stem Cells | 2013

Decrease in Abundance of Apurinic/Apyrimidinic Endonuclease Causes Failure of Base Excision Repair in Culture-Adapted Human Embryonic Stem Cells

Miriama Krutá; Lukas Balek; Renata Hejnová; Zuzana Dobšáková; Lívia Eiselleová; Kamil Matulka; Tomáš Bárta; Petr Fojtík; Jiří Fajkus; Aleš Hampl; Vladimír Rotrekl

The inevitable accumulation of chromosomal abnormalities in human embryonic stem cells (hESCs) during in vitro expansion represents a considerable obstacle for cell replacement therapies. To determine the source of chromosomal abnormalities, we examined hESCs maintained in culture for over 55 months for defects in telomere maintenance and DNA repair. Although prolonged culture affected neither telomerase activity nor nonhomologous end joining, the efficiency of base excision repair (BER) was significantly decreased and correlated with reduced expression of apurinic/apyrimidinic endonuclease 1 (APE1), the major nuclease required for BER. Interestingly, the expression of other BER enzymes was unchanged. Addition of human recombinant APE1 protein to nuclear extracts from late passage hESCs increased BER efficiency to the level typical of early passage hESCs. The link between BER and double‐strand breaks (DSB) was demonstrated by decreased DSB release after downregulation of APE1 in early passage hESCs via siRNA. Correspondingly lower APE1 level in late passage hESC resulted in slower and less intensive but long lasting DSB release upon ionizing radiation (IR). Downregulation of APE1 in early passage hESCs also led to approximately 30% decrease in γ‐H2AX signaling following IR, similar to that in late passage hESCs. We suggest that downregulation of APE1 significantly contributes to the failure of BER during long‐term culture of hESCs, and further that BER failure is one of the factors affecting the genomic instability of hESCs by altering BER‐dependent DSB release and cell cycle/checkpoint signaling. STEM CELLS 2013;31:693–702


Reproductive Biomedicine Online | 2010

Development of humanized culture medium with plant-derived serum replacement for human pluripotent stem cells

Michaela Kunová; Kamil Matulka; Lívia Eiselleová; Petra Trckova; Aleš Hampl; Petr Dvorak

For human embryonic stem cells (ESC) to be used in cell replacement therapies, they must be grown under good manufacturing conditions in a chemically defined medium that lacks animal proteins. This study examined the ability of a newly designed medium containing the plant-derived serum replacement VegetaCell and other reagents of human origin to support undifferentiated growth and pluripotency of human ESC. This medium was tested in several culture systems, using human fibroblasts as a feeder layer or Matrigel in a feeder-free culture. Even under the most stringent feeder-free conditions without conditioned medium, human ESC exhibited an undifferentiated morphology, expressed markers of undifferentiated cells, demonstrated high alkaline phosphatase activity and multilineage differentiation and retained a normal karyotype. Compared with human ESC grown in standard culture conditions, human ESC maintained in humanized VegetaCell medium show longer cell cycles and decreased cell death. The availability of an animal protein-free medium supplemented with the low-cost VegetaCell reagent expands the repertoire of media for culturing human ESC as well as induced pluripotent stem cells for drug testing and cell replacement therapy.


Journal of Biomedical Materials Research Part B | 2011

Pentapeptide-modified poly(N,N-diethylacrylamide) hydrogel scaffolds for tissue engineering.

Daniel Horák; Kamil Matulka; Helena Hlídková; Monika Lapčíková; Milan J. Beneš; Josef Jaroš; Aleš Hampl


Archive | 2011

Teratoma formation by human embryonic stem cells

Michaela Kunová; Kamil Matulka; Anton Salykin; Aleš Hampl


Archive | 2014

PTP1B ACTS AS A NOVEL EFFECTOR OF THE ACTIVIN PATHWAY TO CHOOSE MESENDODERMAL OR NEURAL FATE IN EMBRYONIC STEM CELLS

Kamil Matulka; Hsuan-Hwai Lin; Hana Hříbková; Dafe Uwanogho; Yuh-Man Wadeley


Archive | 2013

FGFR1 in human embryonic stem cells

Tereza Váňová; Kamil Matulka; Michaela Kunova Bosakova; Žaneta Konečná; Yuh-Man Wadeley


Archive | 2013

Tec kinase in human pluripotent stem cells: expression,localization and function

Žaneta Konečná; Michaela Kunova Bosakova; Tereza Váňová; Kamil Matulka

Collaboration


Dive into the Kamil Matulka's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge