Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Michaela Kunova Bosakova is active.

Publication


Featured researches published by Michaela Kunova Bosakova.


Human Molecular Genetics | 2016

An inactivating mutation in intestinal cell kinase, ICK, impairs hedgehog signalling and causes short rib-polydactyly syndrome.

S. Paige Taylor; Michaela Kunova Bosakova; Miroslav Vařecha; Lukas Balek; Tomáš Bárta; Lukáš Trantírek; Iva Jelínková; Ivan Duran; Iva Vesela; Kimberly N. Forlenza; Jorge Martin; Aleš Hampl; Michael J. Bamshad; Deborah A. Nickerson; Margie Jaworski; Jieun Song; Hyuk Wan Ko; Daniel H. Cohn; Deborah Krakow; Pavel Krejčí

The short rib polydactyly syndromes (SRPS) are a group of recessively inherited, perinatal-lethal skeletal disorders primarily characterized by short ribs, shortened long bones, varying types of polydactyly and concomitant visceral abnormalities. Mutations in several genes affecting cilia function cause SRPS, revealing a role for cilia function in skeletal development. To identify additional SRPS genes and discover novel ciliary molecules required for normal skeletogenesis, we performed exome sequencing in a cohort of patients and identified homozygosity for a missense mutation, p.E80K, in Intestinal Cell Kinase, ICK, in one SRPS family. The p.E80K mutation abolished serine/threonine kinase activity, resulting in altered ICK subcellular and ciliary localization, increased cilia length, aberrant cartilage growth plate structure, defective Hedgehog and altered ERK signalling. These data identify ICK as an SRPS-associated gene and reveal that abnormalities in signalling pathways contribute to defective skeletogenesis.


eLife | 2017

One reporter for in-cell activity profiling of majority of protein kinase oncogenes.

Iva Gudernova; Silvie Foldynova-Trantirkova; Barbora El Ghannamova; Bohumil Fafilek; Miroslav Varecha; Lukas Balek; Eva Hrubá; Lucie Jonatova; Iva Jelínková; Michaela Kunova Bosakova; Lukáš Trantírek; Jiri Mayer; Pavel Krejčí

In-cell profiling enables the evaluation of receptor tyrosine activity in a complex environment of regulatory networks that affect signal initiation, propagation and feedback. We used FGF-receptor signaling to identify EGR1 as a locus that strongly responds to the activation of a majority of the recognized protein kinase oncogenes, including 30 receptor tyrosine kinases and 154 of their disease-associated mutants. The EGR1 promoter was engineered to enhance trans-activation capacity and optimized for simple screening assays with luciferase or fluorescent reporters. The efficacy of the developed, fully synthetic reporters was demonstrated by the identification of novel targets for two clinically used tyrosine kinase inhibitors, nilotinib and osimertinib. A universal reporter system for in-cell protein kinase profiling will facilitate repurposing of existing anti-cancer drugs and identification of novel inhibitors in high-throughput screening studies. DOI: http://dx.doi.org/10.7554/eLife.21536.001


Stem Cells | 2017

TEC controls pluripotency and early cell fate decisions of human pluripotent stem cells via regulation of FGF2 secretion

Tereza Vanova; Zaneta Konecna; Zuzana Zbonakova; Giuseppe La Venuta; Karolina Zoufalova; Šárka Jelínková; Miroslav Varecha; Vladimír Rotrekl; Pavel Krejčí; Walter Nickel; Petr Dvorak; Michaela Kunova Bosakova

Human pluripotent stem cells (hPSC) require signaling provided by fibroblast growth factor (FGF) receptors. This can be initiated by the recombinant FGF2 ligand supplied exogenously, but hPSC further support their niche by secretion of endogenous FGF2. In this study, we describe a role of tyrosine kinase expressed in hepatocellular carcinoma (TEC) kinase in this process. We show that TEC‐mediated FGF2 secretion is essential for hPSC self‐renewal, and its lack mediates specific differentiation. Following both short hairpin RNA‐ and small interfering RNA‐mediated TEC knockdown, hPSC secretes less FGF2. This impairs hPSC proliferation that can be rescued by increasing amounts of recombinant FGF2. TEC downregulation further leads to a lower expression of the pluripotency markers, an improved priming towards neuroectodermal lineage, and a failure to develop cardiac mesoderm. Our data thus demonstrate that TEC is yet another regulator of FGF2‐mediated hPSC pluripotency and differentiation. Stem Cells 2017;35:2050–2059


Stem Cells | 2017

Tyrosine Kinase Expressed in Hepatocellular Carcinoma, TEC, Controls Pluripotency and Early Cell Fate Decisions of Human Pluripotent Stem Cells via Regulation of Fibroblast Growth Factor-2 Secretion

Tereza Vanova; Zaneta Konecna; Zuzana Zbonakova; Giuseppe La Venuta; Karolina Zoufalova; Šárka Jelínková; Miroslav Varecha; Vladimír Rotrekl; Pavel Krejčí; Walter Nickel; Petr Dvorak; Michaela Kunova Bosakova

Human pluripotent stem cells (hPSC) require signaling provided by fibroblast growth factor (FGF) receptors. This can be initiated by the recombinant FGF2 ligand supplied exogenously, but hPSC further support their niche by secretion of endogenous FGF2. In this study, we describe a role of tyrosine kinase expressed in hepatocellular carcinoma (TEC) kinase in this process. We show that TEC‐mediated FGF2 secretion is essential for hPSC self‐renewal, and its lack mediates specific differentiation. Following both short hairpin RNA‐ and small interfering RNA‐mediated TEC knockdown, hPSC secretes less FGF2. This impairs hPSC proliferation that can be rescued by increasing amounts of recombinant FGF2. TEC downregulation further leads to a lower expression of the pluripotency markers, an improved priming towards neuroectodermal lineage, and a failure to develop cardiac mesoderm. Our data thus demonstrate that TEC is yet another regulator of FGF2‐mediated hPSC pluripotency and differentiation. Stem Cells 2017;35:2050–2059


Frontiers in Physiology | 2016

MORN5 Expression during Craniofacial Development and Its Interaction with the BMP and TGFβ Pathways

Petra Celá; Marek Hampl; Katherine Fu; Michaela Kunova Bosakova; Pavel Krejčí; Joy M. Richman; Marcela Buchtová

MORN5 (MORN repeat containing 5) is encoded by a locus positioned on chromosome 17 in the chicken genome. The MORN motif is found in multiple copies in several proteins including junctophilins or phosphatidylinositol phosphate kinase family and the MORN proteins themselves are found across the animal and plant kingdoms. MORN5 protein has a characteristic punctate pattern in the cytoplasm in immunofluorescence imaging. Previously, MORN5 was found among differentially expressed genes in a microarray profiling experiment of the chicken embryo head. Here, we provided in situ hybridization to analyse, in detail, the MORN5 expression in chick craniofacial structures. The expression of MORN5 was first observed at stage HH17-18 (E2.5). MORN5 expression gradually appeared on either side of the primitive oral cavity, within the maxillary region. At stage HH20 (E3), prominent expression was localized in the mandibular prominences lateral to the midline. From stage HH20 up to HH29 (E6), there was strong expression in restricted regions of the maxillary and mandibular prominences. The frontonasal mass (in the midline of the face) expressed MORN5, starting at HH27 (E5). The expression was concentrated in the corners or globular processes, which will ultimately fuse with the cranial edges of the maxillary prominences. MORN5 expression was maintained in the fusion zone up to stage HH29. In sections MORN5 expression was localized preferentially in the mesenchyme. Previously, we examined signals that regulate MORN5 expression in the face based on a previous microarray study. Here, we validated the array results with in situ hybridization and QPCR. MORN5 was downregulated 24 h after Noggin and/or RA treatment. We also determined that BMP pathway genes are downstream of MORN5 following siRNA knockdown. Based on these results, we conclude that MORN5 is both regulated by and required for BMP signaling. The restricted expression of MORN5 in the lip fusion zone shown here supports the human genetic data in which MORN5 variants were associated with increased risk of non-syndromic cleft lip with or without cleft palate.


Cellular Signalling | 2018

Proteomic analyses of signalling complexes associated with receptor tyrosine kinase identify novel members of fibroblast growth factor receptor 3 interactome

Lukas Balek; Pavel Nemec; Peter Konik; Michaela Kunova Bosakova; Miroslav Varecha; Iva Gudernova; Jirina Medalova; Deborah Krakow; Pavel Krejčí

Receptor tyrosine kinases (RTKs) form multiprotein complexes that initiate and propagate intracellular signals and determine the RTK-specific signalling patterns. Unravelling the full complexity of protein interactions within the RTK-associated complexes is essential for understanding of RTK functions, yet it remains an understudied area of cell biology. We describe a comprehensive approach to characterize RTK interactome. A single tag immunoprecipitation and phosphotyrosine protein isolation followed by mass-spectrometry was used to identify proteins interacting with fibroblast growth factor receptor 3 (FGFR3). A total of 32 experiments were carried out in two different cell types and identified 66 proteins out of which only 20 (30.3%) proteins were already known FGFR interactors. Using co-immunoprecipitations, we validated FGFR3 interaction with adapter protein STAM1, transcriptional regulator SHOX2, translation elongation factor eEF1A1, serine/threonine kinases ICK, MAK and CCRK, and inositol phosphatase SHIP2. We show that unappreciated signalling mediators exist for well-studied RTKs, such as FGFR3, and may be identified via proteomic approaches described here. These approaches are easily adaptable to other RTKs, enabling identification of novel signalling mediators for majority of the known human RTKs.


Biotechnology and Bioengineering | 2018

Computer-assisted engineering of hyperstable fibroblast growth factor 2

Pavel Dvořák; David Bednář; Pavel Vaňáček; Lukas Balek; Lívia Eiselleová; Veronika Štěpánková; Eva Sebestova; Michaela Kunova Bosakova; Žaneta Konečná; Stanislav Mazurenko; Antonin Kunka; Tereza Váňová; Karolina Zoufalova; Radka Chaloupková; Jan Brezovský; Pavel Krejčí; Zbyněk Prokop; Jiří Damborský

Fibroblast growth factors (FGFs) serve numerous regulatory functions in complex organisms, and their corresponding therapeutic potential is of growing interest to academics and industrial researchers alike. However, applications of these proteins are limited due to their low stability. Here we tackle this problem using a generalizable computer‐assisted protein engineering strategy to create a unique modified FGF2 with nine mutations displaying unprecedented stability and uncompromised biological function. The data from the characterization of stabilized FGF2 showed a remarkable prediction potential of in silico methods and provided insight into the unfolding mechanism of the protein. The molecule holds a considerable promise for stem cell research and medical or pharmaceutical applications.


Stem Cells and Development | 2017

An Efficient Method for Generation of Knockout Human Embryonic Stem Cells Using CRISPR/Cas9 System

Dáša Bohačiaková; Tereza Renzova; Veronika Fedorová; Martin Barák; Michaela Kunova Bosakova; Aleš Hampl; Lukas Cajanek

Human embryonic stem cells (hESCs) represent a promising tool to study functions of genes during development, to model diseases, and to even develop therapies when combined with gene editing techniques such as CRISPR/CRISPR-associated protein-9 nuclease (Cas9) system. However, the process of disruption of gene expression by generation of null alleles is often inefficient and tedious. To circumvent these limitations, we developed a simple and efficient protocol to permanently downregulate expression of a gene of interest in hESCs using CRISPR/Cas9. We selected p53 for our proof of concept experiments. The methodology is based on series of hESC transfection, which leads to efficient downregulation of p53 expression even in polyclonal population (p53 Low cells), here proven by a loss of regulation of the expression of p53 target gene, microRNA miR-34a. We demonstrate that our approach achieves over 80% efficiency in generating hESC clonal sublines that do not express p53 protein. Importantly, we document by a set of functional experiments that such genetically modified hESCs do retain typical stem cells characteristics. In summary, we provide a simple and robust protocol to efficiently target expression of gene of interest in hESCs that can be useful for laboratories aiming to employ gene editing in their hESC applications/protocols.


Journal of Dental Research | 2017

Role of Primary Cilia in Odontogenesis

Marek Hampl; Petra Celá; H.L. Szabo-Rogers; Michaela Kunova Bosakova; Hana Dosedelova; Pavel Krejčí; Marcela Buchtová

Primary cilium is a solitary organelle that emanates from the surface of most postmitotic mammalian cells and serves as a sensory organelle, transmitting the mechanical and chemical cues to the cell. Primary cilia are key coordinators of various signaling pathways during development and maintenance of tissue homeostasis. The emerging evidence implicates primary cilia function in tooth development. Primary cilia are located in the dental epithelium and mesenchyme at early stages of tooth development and later during cell differentiation and production of hard tissues. The cilia are present when interactions between both the epithelium and mesenchyme are required for normal morphogenesis. As the primary cilium coordinates several signaling pathways essential for odontogenesis, ciliary defects can interrupt the latter process. Genetic or experimental alterations of cilia function lead to various developmental defects, including supernumerary or missing teeth, enamel and dentin hypoplasia, or teeth crowding. Moreover, dental phenotypes are observed in ciliopathies, including Bardet-Biedl syndrome, Ellis-van Creveld syndrome, Weyers acrofacial dysostosis, cranioectodermal dysplasia, and oral-facial-digital syndrome, altogether demonstrating that primary cilia play a critical role in regulation of both the early odontogenesis and later differentiation of hard tissue–producing cells. Here, we summarize the current evidence for the localization of primary cilia in dental tissues and the impact of disrupted cilia signaling on tooth development in ciliopathies.


Scientific Reports | 2018

Colicin F Y inhibits pathogenic Yersinia enterocolitica in mice

Juraj Bosák; Lenka Micenková; Matěj Hrala; Katarína Pomorská; Michaela Kunova Bosakova; Pavel Krejčí; Eduard Göpfert; Martin Faldyna; David Šmajs

Yersiniosis belongs to the common foodborne diseases around the world, and frequently manifests as diarrhea that can be treated with probiotics. Colicin FY is an antibacterial agent produced by bacteria and it is capable of specific growth inhibition of Yersinia enterocolitica, the causative agent of gastrointestinal yersiniosis. In this study, recombinant E. coli producing colicin FY were constructed, using both known probiotic strains EcH22 and EcColinfant, and the newly isolated murine strains Ec1127 and Ec1145. All E. coli strains producing colicin FY inhibited growth of pathogenic Y. enterocolitica during co-cultivation in vitro. In dysbiotic mice treated with streptomycin, E. coli strains producing colicin FY inhibited progression of Y. enterocolitica infections. This growth inhibition was not observed in mice with normal gut microflora, likely due to insufficient colonization capacity of E. coli strains and/or due to spatial differences in intestinal niches. Isogenic Y. enterocolitica producing colicin FY was constructed and shown to inhibit pathogenic Y. enterocolitica in mice with normal microflora. Evidence of in vivo antimicrobial activity of colicin FY may have utility in the treatment of Y. enterocolitica infections.

Collaboration


Dive into the Michaela Kunova Bosakova's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lukáš Trantírek

Central European Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tereza Váňová

Academy of Sciences of the Czech Republic

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge