Kamini Kalidas
St George's Hospital
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kamini Kalidas.
Nature Genetics | 2001
Marco Tartaglia; Ernest L. Mehler; Rosalie Goldberg; Giuseppe Zampino; Han G. Brunner; Hannie Kremer; Ineke van der Burgt; Andrew H. Crosby; Andra Ion; Steve Jeffery; Kamini Kalidas; Michael A. Patton; Raju Kucherlapati; Bruce D. Gelb
Noonan syndrome (MIM 163950) is an autosomal dominant disorder characterized by dysmorphic facial features, proportionate short stature and heart disease (most commonly pulmonic stenosis and hypertrophic cardiomyopathy). Webbed neck, chest deformity, cryptorchidism, mental retardation and bleeding diatheses also are frequently associated with this disease. This syndrome is relatively common, with an estimated incidence of 1 in 1,000–2,500 live births. It has been mapped to a 5-cM region (N-SH2) on chromosome 12q24.1, and genetic heterogeneity has also been documented. Here we show that missense mutations in PTPN11 (MIM 176876)—a gene encoding the nonreceptor protein tyrosine phosphatase SHP-2, which contains two Src homology 2 (SH2) domains—cause Noonan syndrome and account for more than 50% of the cases that we examined. All PTPN11 missense mutations cluster in interacting portions of the amino N-SH2 domain and the phosphotyrosine phosphatase domains, which are involved in switching the protein between its inactive and active conformations. An energetics-based structural analysis of two N-SH2 mutants indicates that in these mutants there may be a significant shift of the equilibrium favoring the active conformation. This implies that they are gain-of-function changes and that the pathogenesis of Noonan syndrome arises from excessive SHP-2 activity.
American Journal of Human Genetics | 2002
Marco Tartaglia; Kamini Kalidas; Adam Shaw; Xiaoling Song; Dan L. Musat; Ineke van der Burgt; Han G. Brunner; Débora Romeo Bertola; Andrew H. Crosby; Andra Ion; Raju Kucherlapati; Steve Jeffery; Michael A. Patton; Bruce D. Gelb
Noonan syndrome (NS) is a developmental disorder characterized by facial dysmorphia, short stature, cardiac defects, and skeletal malformations. We recently demonstrated that mutations in PTPN11, the gene encoding the non-receptor-type protein tyrosine phosphatase SHP-2 (src homology region 2-domain phosphatase-2), cause NS, accounting for approximately 50% of cases of this genetically heterogeneous disorder in a small cohort. All mutations were missense changes and clustered at the interacting portions of the amino-terminal src-homology 2 (N-SH2) and protein tyrosine phosphatase (PTP) domains. A gain of function was postulated as a mechanism for the disease. Here, we report the spectrum and distribution of PTPN11 mutations in a large, well-characterized cohort with NS. Mutations were found in 54 of 119 (45%) unrelated individuals with sporadic or familial NS. There was a significantly higher prevalence of mutations among familial cases than among sporadic ones. All defects were missense, and several were recurrent. The vast majority of mutations altered amino acid residues located in or around the interacting surfaces of the N-SH2 and PTP domains, but defects also affected residues in the C-SH2 domain, as well as in the peptide linking the N-SH2 and C-SH2 domains. Genotype-phenotype analysis revealed that pulmonic stenosis was more prevalent among the group of subjects with NS who had PTPN11 mutations than it was in the group without them (70.6% vs. 46.2%; P<.01), whereas hypertrophic cardiomyopathy was less prevalent among those with PTPN11 mutations (5.9% vs. 26.2%; P<.005). The prevalence of other congenital heart malformations, short stature, pectus deformity, cryptorchidism, and developmental delay did not differ between the two groups. A PTPN11 mutation was identified in a family inheriting Noonan-like/multiple giant-cell lesion syndrome, extending the phenotypic range of disease associated with this gene.
Archives of Disease in Childhood | 2006
Adam Shaw; Kamini Kalidas; Andrew H. Crosby; Steve Jeffery; Michael A. Patton
Objective: To define better the adult phenotype and natural history of Noonan syndrome. Design: A prospective observational study of a large cohort. Results: Data are presented for 112 individuals with Noonan syndrome (mean age 25.3 (range 12–71) years), who were followed up for a mean of 12.02 years. Mutations in PTPN11 were identified in 35% of probands. Ten subjects died during the study interval; three of these deaths were secondary to heart failure associated with hypertrophic cardiomyopathy. Pulmonary stenosis affected 73 (65%) subjects; 42 (58%) required no intervention, nine underwent balloon pulmonary valvuloplasty (three requiring further intervention) and 22 surgical valvuloplasty (three requiring further intervention). Hypertrophic cardiomyopathy affected 21 (19%) patients, which had remitted in two cases, but one subject required cardiac transplant. No subjects died suddenly or had symptoms suggestive of arrhythmia. The mean final adult height was 167.4 cm in males and 152.7 cm in females. Feeding problems in infancy were identified as a predictor of future outcome. The mean age of speaking in two-word phrases was 26 months for those with no feeding difficulties, compared with 39 months for those with severe problems requiring nasogastric feeding. Attendance at a school for children with special needs for the same groups was 12.5% and 58%, respectively. A statement of special educational need had been issued in 44% overall; however, academic achievement was broadly similar to that of the general population. Implications: Although the morbidity for some patients with Noonan syndrome is low, early predictors of poorer outcome have been identified, which will help ascertain those most in need of intervention.
The Cardiology | 2009
Michael A. Simpson; Sahar Mansour; D Ahnood; Kamini Kalidas; Michael A. Patton; William J. McKenna; Elijah R. Behr; Andrew H. Crosby
Objectives: The phenotypic triad of arrhythmogenic right ventricular cardiomyopathy (ARVC) associated with palmoplantar keratoderma and woolly hair has been previously associated with homozygous mutations in both plakoglobin and desmoplakin, which are both critical components of the desmosome. We present here a clinical and genetic study of a consanguineous pedigree in which 2 siblings present with ARVC with left ventricular involvement and associated mild palmoplantar keratoderma and woolly hair. Methods: Clinical evaluation of the 2 patients and their family members was undertaken along with a homozygosity-mapping approach to identify the relevant gene and sequencing analysis to identify the causative mutation. Results: The homozygosity-mapping approach excluded the involvement of both plakoglobin and desmoplakin in this pedigree. However, an extended region of homozygosity in both affected cases was revealed at the chromosome 18 desmocollin/desmoglein cluster, genes which encode components of the desmosome. Sequence analysis of the democollin-2 gene, located within this cluster, revealed a homozygous single-base deletion in exon 12 (1841delG). This mutation is predicted to lead to a frame shift and a premature termination codon at position 625 (S614fsX625). Conclusions: This is the first reported case of a mutation in desmocollin-2 associated with autosomal recessive ARVC.
Circulation Research | 2013
Kristiana Gordon; Dörte Schulte; Glen Brice; Michael A. Simpson; M. Guy Roukens; Andreas van Impel; Fiona Connell; Kamini Kalidas; Steve Jeffery; P.S. Mortimer; Sahar Mansour; Stefan Schulte-Merker; Pia Ostergaard
Rationale: Mutations in vascular endothelial growth factor (VEGF) receptor-3 (VEGFR3 or FLT4) cause Milroy disease, an autosomal dominant condition that presents with congenital lymphedema. Mutations in VEGFR3 are identified in only 70% of patients with classic Milroy disease, suggesting genetic heterogeneity. Objective: To investigate the underlying cause in patients with clinical signs resembling Milroy disease in whom sequencing of the coding region of VEGFR3 did not reveal any pathogenic variation. Methods and Results: Exome sequencing of 5 such patients was performed, and a novel frameshift variant, c.571_572insTT in VEGFC, a ligand for VEGFR3, was identified in 1 proband. The variant cosegregated with the affected status in the family. An assay to assess the biological function of VEGFC activity in vivo, by expressing human VEGFC in the zebrafish floorplate was established. Forced expression of wild-type human VEGFC in the floorplate of zebrafish embryos leads to excessive sprouting in neighboring vessels. However, when overexpressing the human c.571_572insTT variant in the floorplate, no sprouting of vessels was observed, indicating that the base changes have a marked effect on the activity of VEGFC. Conclusions: We propose that the mutation in VEGFC is causative for the Milroy disease-like phenotype seen in this family. This is the first time a mutation in one of the ligands of VEGFR3 has been reported to cause primary lymphedema.Rationale: Mutations in VEGFR3 (FLT4) cause Milroy Disease (MD), an autosomal dominant condition that presents with congenital lymphedema. Mutations in VEGFR3 are identified in only 70% of patients with classic MD, suggesting genetic heterogeneity. Objective: To investigate the underlying cause in patients with clinical signs resembling MD in whom sequencing of the coding region of VEGFR3 did not reveal any pathogenic variation. Methods and Results: Exome sequencing of five such patients was performed and a novel frameshift variant, c.571\_572insTT in VEGFC , a ligand for VEGFR3, was identified in one proband. The variant co-segregated with the affected status in the family. An assay to assess the biological function of VEGFC activity in vivo, by expressing human VEGFC in the zebrafish floorplate was established. Forced expression of wildtype human VEGFC in the floorplate of zebrafish embryos leads to excessive sprouting in neighbouring vessels. However, when overexpressing the human c.571\_572insTT variant in the floorplate, no sprouting of vessels was observed, indicating that the base changes have a marked effect on the activity of VEGFC. Conclusions: We propose that the mutation in VEGFC is causative for the MD-like phenotype seen in this family. This is the first time a mutation in one of the ligands of VEGFR3 has been reported to cause primary lymphedema.
American Journal of Medical Genetics Part A | 2003
Diana Baralle; Chris Mattocks; Kamini Kalidas; Frances Elmslie; Joanne Whittaker; Melissa Lees; Nk Ragge; Michael A. Patton; Robin M. Winter; Charles ffrench-Constant
The association of the Noonan phenotype with neurofibromatosis type 1 (NF1) was first noted by Allanson et al. [Am J Med Genet 1985;21:457–462.] and 30 further cases have subsequently been reported. It has been suggested that this phenotype is more common than previously appreciated, as Colley et al. [Clin Genet 1996;49:59–64.] examined 94 sequentially identified patients with NF1 from their genetic register and found Noonan features in 12. A 3‐bp deletion of exon 17 of the NF1 neurofibromin gene was described in one family by Carey et al. [Proc Greenwood Genet Center 1997;17:52–53]. However, it remains unclear whether Neurofibromatosis–Noonan syndrome (NFNS) represents a form of NF1 (with mutations in the NF1 neurofibromin gene) or a separate syndrome. We have used a new, rapid sequence analysis technique—comparative sequence analysis (CSA)—to examine the NF1 gene in six patients with NFNS. None of the six patients had the previously identified mutation, nor did we observe other mutations within this exon. However, two other mutations were found: in exon 25, a 3‐bp deletion 4312 del GAA, and in exon 23‐2, a 2‐bp insertion 4095 ins TG. The PTPN11 gene, now known to cause over 50% of Noonan syndrome was also examined in four cases of NFNS, and no mutations were found. These results show that NFNS can in some cases result from different mutations in the NF1 gene and therefore represents a variant form of NF1.
American Journal of Human Genetics | 2004
Marco Tartaglia; Viviana Cordeddu; Hong Chang; Adam Shaw; Kamini Kalidas; Andrew H. Crosby; Michael A. Patton; Mariella Sorcini; Ineke van der Burgt; Steve Jeffery; Bruce D. Gelb
Germline mutations in PTPN11--the gene encoding the nonreceptor protein tyrosine phosphatase SHP-2--represent a major cause of Noonan syndrome (NS), a developmental disorder characterized by short stature and facial dysmorphism, as well as skeletal, hematologic, and congenital heart defects. Like many autosomal dominant disorders, a significant percentage of NS cases appear to arise from de novo mutations. Here, we investigated the parental origin of de novo PTPN11 lesions and explored the effect of paternal age in NS. By analyzing intronic portions that flank the exonic PTPN11 lesions in 49 sporadic NS cases, we traced the parental origin of mutations in 14 families. Our results showed that all mutations were inherited from the father, despite the fact that no substitution affected a CpG dinucleotide. We also report that advanced paternal age was observed among cohorts of sporadic NS cases with and without PTPN11 mutations and that a significant sex-ratio bias favoring transmission to males was present in subjects with sporadic NS caused by PTPN11 mutations, as well as in families inheriting the disorder.
American Journal of Medical Genetics Part A | 2010
Sahar Mansour; Fiona Connell; Colin G. Steward; Pia Ostergaard; Glen Brice; Sarah F. Smithson; Peter Lunt; Steve Jeffery; Inderjeet Dokal; Tom Vulliamy; Brenda Gibson; Shirley Hodgson; Sally Cottrell; Louise Kiely; Lorna Tinworth; Kamini Kalidas; Ghulam J. Mufti; Jackie Cornish; Russell Keenan; P.S. Mortimer; Victoria Murday
Four reports have been published on an association between acute myeloid leukaemia (AML) and primary lymphedema, with or without congenital deafness. We report seven new cases, including one extended family, confirming this entity as a genetic syndrome. The lymphedema typically presents in one or both lower limbs, before the hematological abnormalities, with onset between infancy and puberty and frequently affecting the genitalia. The AML is often preceded by pancytopenia or myelodysplasia with a high incidence of monosomy 7 in the bone marrow (five propositi and two relatives). Associated anomalies included hypotelorism, epicanthic folds, long tapering fingers and/or neck webbing (four patients), recurrent cellulitis in the affected limb (four patients), generalized warts (two patients), and congenital, high frequency sensorineural deafness (one patient). Children with lower limb and genital lymphedema should be screened for hematological abnormalities and immunodeficiency.
Heart | 2007
Kenneth G. Zahka; Kamini Kalidas; Michael A. Simpson; Harold E. Cross; Bradley B. Keller; Csaba Galambos; Kay Gurtz; Michael A. Patton; Andrew H. Crosby
Background: Familial hypertrophic cardiomyopathy (HCM) is a leading cause of sudden cardiac death among young and apparently healthy people. Autosomal dominant mutations within genes encoding sarcomeric proteins have been identified. An autosomal recessive form of HCM has been discovered in a group of Amish children that is associated with poor prognosis and death within the first year of life. Affected patients experienced progressive cardiac failure despite maximal medical treatment. Postmortem histology showed myofibre disarray and myocyte loss consistent with refractory clinical deterioration in affected infants. Objective: To conduct a genome-wide screen for linkage and try to identify an autozygous region which cosegregates with the infant cardiac phenotype Methods and results: An autozygous region of chromosome 11 which cosegregates with the infant cardiac phenotype was identified. This region contained the MYBPC3 gene, which has previously been associated with autosomal dominant adult-onset HCM. Sequence analysis of the MYBPC3 gene identified a splice site mutation in intron 30 which was homozygous in all affected infants. All surviving patients with the homozygous MYBPC3 gene mutations (3330+2T>G) underwent an orthotopic heart transplantation. Conclusions: Homozygous mutations in the MYBPC3 gene have been identified as the cause of severe infantile HCM among the Amish population.
Journal of Medical Genetics | 2005
P A Wilkinson; Michael A. Simpson; L Bastaki; H Patel; Johanna A. Reed; Kamini Kalidas; E Samilchuk; R Khan; Thomas T. Warner; Andrew H. Crosby
The term hereditary spastic paraplegia (HSP) is used to describe a group of clinically and genetically heterogeneous disorders in which the defining clinical feature is progressive spasticity and weakness of the lower limbs. The phenotype is traditionally classified as “pure” when symptoms and signs are generally confined to those of a progressive spastic paraparesis, or “complicated” when associated with additional neurological or other clinical features.1 Inheritance may be autosomal dominant, autosomal recessive, or rarely X linked. Overall autosomal dominant inheritance is most commonly associated with pure forms of the disease, whereas autosomal recessive HSP shows greater phenotypic variability, including several well defined syndromes.2,3 To date nine autosomal recessive HSP loci have been identified and causative mutations found in three genes: SPG7 (paraplegin), SPG20 (spartin), and SPG21 (maspardin). SPG7 encodes paraplegin, a mitochondrial protein, which is a member of the AAA protein superfamily (ATPase associated with diverse cellular activities) and is homologous to a number of yeast mitochondrial metalloproteases.4 SPG7 mutations may result in either pure or complicated HSP phenotypes.4,5 Muscle biopsy analysis of patients with SPG7 mutations may show histological evidence of mitochondrial dysfunction4,6 and recently biochemical studies have shown specific defects in mitochondrial respiratory chain function.5,7 Mutations …