Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kamini Srivastava is active.

Publication


Featured researches published by Kamini Srivastava.


PLOS ONE | 2012

Estrogen Deficiency Induces the Differentiation of IL-17 Secreting Th17 Cells: A New Candidate in the Pathogenesis of Osteoporosis

Abdul Malik Tyagi; Kamini Srivastava; Mohd Nizam Mansoori; Ritu Trivedi; Naibedya Chattopadhyay; Divya Singh

Th17 cells produce IL-17, and the latter promotes bone loss in collagen-induced arthritis in mice. Blocking IL-17 action in mouse model of rheumatoid arthritis reduces disease symptoms. These observations suggest that Th17 cells may be involved in the pathogenesis of bone loss. However, the role of Th17 cell in estrogen (E2) deficiency-induced bone loss is still not very clear. We investigated the effect of E2 on Th17 differentiation in vivo and IL-17 mediated regulation of osteoclast and osteoblast differentiation. Additionally, effect of IL-17 functional block under E2 deficiency-induced bone loss was studied. In murine bone marrow cells, E2 suppressed IL-17 mediated osteoclast differentiation. IL-17 inhibited formation of mineralized nodules in osteoblasts and this effect was suppressed by E2. E2 treatment to mouse calvarial osteoblasts inhibited the IL-17-induced production of osteoclastogenic cytokines and NF-kB translocation. In ovariectomized mice, there was increase in the number of Th17 cells, transcription factors promoting Th17 cell differentiation and circulating IL-17 levels. These effects were reversed by E2 supplementation. Treatment of neutralizing IL-17 monoclonal antibody to Ovx mice mitigated the E2 deficiency-induced trabecular bone loss and reversed the decreased osteoprotegerin-to-receptor activator of nuclear factor kappa B ligand (RANKL) transcript levels in long bones, increased osteoclast differentiation from the bone marrow precursor cells and decreased osteoblast differentiation from the bone marrow stromal cells. Our findings indicate that E2 deficiency leads to increased differentiation of Th17 cells with attendant up regulation of STAT3, ROR-γt and ROR-α and downregulation of Foxp3 which antagonizes Th17 cell differentiation. Increased IL-17 production in turn induces bone loss by increasing pro-osteoclastogenic cytokines including TNF-α, IL-6 and RANKL from osteoblasts and functional block of IL-17 prevents bone loss. IL-17 thus plays a critical causal role in Ovx-induced bone loss and may be considered a potential therapeutic target in pathogenesis of post menopausal osteoporosis.


PLOS ONE | 2011

Daidzein Prevents the Increase in CD4+CD28null T Cells and B Lymphopoesis in Ovariectomized Mice: A Key Mechanism for Anti-Osteoclastogenic Effect

Abdul Malik Tyagi; Kamini Srivastava; Kunal Sharan; Dinesh Kumar Yadav; Rakesh Maurya; Divya Singh

Estrogen deficiency leads to an upregulation of TNF-α producing T cells and B-lymphopoesis which augments osteoclastogenesis. Estrogen deficiency also increases the population of premature senescent CD4+CD28null T cells which secrete a higher amount of TNF-α thus leading to enhanced osteoclastogenesis. Isoflavonoids like daidzein and genistein are found mostly in soybeans, legumes, and peas. These share structural similarity with 17β-stradiol (E2) and have osteoprotective role. This study explores the effect of daidzein (Daid) on the proliferation of TNF-α producing T cells, premature senescent T cells and B cell lymphopoesis under estrogen deficient conditions. For this study adult Balb/c mice were treated with Daid at 10 mg/kg body weight dose by oral gavage daily post ovariectomy (Ovx). After six weeks animals were autopsied and bone marrow and spleen cells were collected for FACS analysis. Blood serum was collected for ELISA. It was observed that Ovx mice treated with Daid for six weeks show reduction in Ovx induced expansion of CD4+ T cells in bone marrow and spleen when analysed by flow cytometry. Estrogen deficiency led to increased prevalence of TNF-α secreting CD4+CD28null T cells, however, treatment with Daid increased the percentage of CD4+CD28+ T cells. Co-culture of CD4+CD28null T cells and bone marrow resulted in enhanced osteoclastogenesis as evident by increased tartarate resistant acid phosphatase (TRAP) expression, an osteoclast marker. However, treatment with Daid resulted in reduced osteoclastogenesis in CD4+CD28null T cells and bone marrow cell co-culture. Daid also regulated B lymphopoesis and decreased mRNA levels of RANKL in B220+ cells. Taken together, we propose that one of the mechanisms by which Daid prevents bone loss is by reversing the detrimental immune changes as a result of estrogen deficiency.


Journal of Nutritional Biochemistry | 2011

Differential effects of formononetin and cladrin on osteoblast function, peak bone mass achievement and bioavailability in rats

Abnish K. Gautam; Biju Bhargavan; Abdul Malik Tyagi; Kamini Srivastava; Dinesh Kumar Yadav; Manmeet Kumar; Akanksha Singh; Jay Sharan Mishra; Amar Bahadur Singh; Sabyasachi Sanyal; Rakesh Maurya; Lakshmi Manickavasagam; Sheelendra Pratap Singh; Wahajuddin Wahajuddin; Girish Kumar Jain; Naibedya Chattopadhyay; Divya Singh

Dietary soy isoflavones including genistein and daidzein have been shown to have favorable effects during estrogen deficiency in experimental animals and humans. We have evaluated osteogenic effect of cladrin and formononetin, two structurally related methoxydaidzeins found in soy food and other natural sources. Cladrin, at as low as 10 nM, maximally stimulated both osteoblast proliferation and differentiation by activating MEK-Erk pathway. On the other hand, formononetin maximally stimulated osteoblast differentiation at 100 nM that involved p38 MAPK pathway but had no effect on osteoblast proliferation. Unlike daidzein, these two compounds neither activated estrogen receptor in osteoblast nor had any effect on osteoclast differentiation. Daily oral administration of each of these compounds at 10.0 mg kg(-1) day(-1) dose to recently weaned female Sprague-Dawley rats for 30 consecutive days, increased bone mineral density at various anatomic positions studied. By dynamic histomorphometry of bone, we observed that rats treated with cladrin exhibited increased mineral apposition and bone formation rates compared with control, while formononetin had no effect. Cladrin had much better plasma bioavailability compared with formononetin. None of these compounds exhibited estrogen agonistic effect in uteri. Our data suggest that cladrin is more potent among the two in promoting parameters of peak bone mass achievement, which could be attributed to its stimulatory effect on osteoblast proliferation and better bioavailability. To the best of our knowledge, this is the first attempt to elucidate structure-activity relationship between the methoxylated forms of daidzein and their osteogenic effects.


Molecular and Cellular Endocrinology | 2010

Medicarpin inhibits osteoclastogenesis and has nonestrogenic bone conserving effect in ovariectomized mice

Abdul Malik Tyagi; Abnish K. Gautam; Amit Kumar; Kamini Srivastava; Biju Bhargavan; Ritu Trivedi; S. Saravanan; Dinesk K. Yadav; Nidhi Singh; Caroline Pollet; Michel Brazier; Romuald Mentaverri; Rakesh Maurya; Naibedya Chattopadhyay; Atul Goel; Divya Singh

Medicarpin, a pterocarpan class of naturally occurring benzopyran furanobenzene compound was synthesized in gram scale to investigate its effects on murine bone cells and in ovariectomized (OVx) mice. Medicarpin, at as low as 10(-10)M suppressed osteoclastogenesis in bone marrow cells (BMCs). Medicarpin-induced apoptosis of mature osteoclasts isolated from long bones. Effects of medicarpin in osteoclasts appear to be independent of estrogen receptor (ER) activation as ICI 180,782 failed to abrogate its effects on osteoclasts. In calvarial osteoblasts, medicarpin (10(-10)M) blocked nuclear factor kappaB (NF-kappaB) signaling assessed by tumor necrosis factor alpha (TNFalpha)-stimulated nuclear translocation of p65 subunit of NF-kappaB. Medicarpin also inhibited the expression of TNFalpha in mouse calvarial osteoblasts. This effect was ER dependent as ICI 180,782 reversed the suppressive effect of medicarpin on TNFalpha mRNA levels in osteoblasts. In addition, like 17beta-estradiol, presence of medicarpin inhibited TNFalpha-induced upregulation of interleukin-1, and -6 mRNA levels in osteoblasts. In co-cultures consisting of calvarial osteoblasts and BMCs, presence of medicarpin increased osteoprotegerin (OPG)/receptor activator of NF-kappaB ligand (RANKL) ratio and reduced mRNA levels of osteoclast markers including tartrate-resistant acid phosphatase and RANK. OVx mice administered medicarpin (10.0mgkg(-1)day(-1)) orally for 30days had reduced formation of osteoclasts but increased formation of osteoprogenitor cells in BMCs compared with OVx+vehicle group. Medicarpin treatment to OVx mice maintained parameters of trabecular microarchitecure. Medicarpin exhibited no uterine estrogenicity. Our findings point towards direct and indirect inhibitory effects of medicarpin on osteoclastogenesis in vitro that contribute to its bone sparing effect in OVx mice.


Journal of Bone and Mineral Research | 2014

Enhanced Immunoprotective Effects by Anti‐IL‐17 Antibody Translates to Improved Skeletal Parameters Under Estrogen Deficiency Compared With Anti‐RANKL and Anti‐TNF‐α Antibodies

Abdul M. Tyagi; Mohd Nizam Mansoori; Kamini Srivastava; Mohd Parvez Khan; Jyoti Kureel; Manisha Dixit; Priyanka Shukla; Ritu Trivedi; Naibedya Chattopadhyay; Divya Singh

Activated T cell has a key role in the interaction between bone and immune system. T cells produce proinflammatory cytokines, including receptor activator of NF‐κB ligand (RANKL), tumor necrosis factor α (TNF‐α), and interleukin 17 (IL‐17), all of which augment osteoclastogenesis. RANKL and TNF‐α are targeted by inhibitors such as denosumab, a human monoclonal RANKL antibody, and infliximab, which neutralizes TNF‐α. IL‐17 is also an important mediator of bone loss, and an antibody against IL‐17 is undergoing phase II clinical trial for rheumatoid arthritis. Although there are a few studies showing suppression of Th17 cell differentiation and induction of regulatory T cells (Tregs) by infliximab, the effect of denosumab remains poorly understood. In this study, we investigated the effects of anti‐TNF‐α, anti‐RANKL, or anti‐IL‐17 antibody administration to estrogen‐deficient mice on CD4+ T‐cell proliferation, CD28 loss, Th17/Treg balance and B lymphopoesis, and finally, the translation of these immunomodulatory effects on skeletal parameters. Adult Balb/c mice were treated with anti‐RANKL/‐TNF‐α/‐IL‐17 subcutaneously, twice a week, postovariectomy (Ovx) for 4 weeks. Animals were then autopsied; bone marrow cells were collected for FACS and RNA analysis and serum collected for ELISA. Bones were dissected for static and dynamic histomorphometry studies. We observed that although anti‐RANKL and anti‐TNF‐α therapies had no effect on Ovx‐induced CD4+ T‐cell proliferation and B lymphopoesis, anti‐IL‐17 effectively suppressed both events with concomitant reversal of CD28 loss. Anti‐IL‐17 antibody reduced proinflammatory cytokine production and induced Tregs. All three antibodies restored trabecular microarchitecture with comparable efficacy; however, cortical bone parameters, bone biomechanical properties, and histomorphometry were best preserved by anti‐IL‐17 antibody, likely attributable to its inhibitory effect on osteoblast apoptosis and increased number of bone lining cells and Wnt10b expression. Based on the superior immunoprotective effects of anti‐IL‐17, which appears to translate to a better skeletal preservation, we propose beginning clinical trials using a humanized antibody against IL‐17 for treatment of postmenopausal osteoporosis.


Bioorganic & Medicinal Chemistry Letters | 2010

Neo-tanshinlactone inspired synthesis, in vitro evaluation of novel substituted benzocoumarin derivatives as potent anti-breast cancer agents.

Koneni V. Sashidhara; Jammikuntla N. Rosaiah; Manoj Kumar; Rishi Kumar Gara; Lakshma Vadithe Nayak; Kamini Srivastava; Hemant Kumar Bid; Rituraj Konwar

A small library of novel benzocoumarin derivatives based on naturally occurring neo-tanshinlactone scaffold was constructed and their antiproliferative activities against breast cancer cells MCF-7 and MDA-MB-231 were evaluated. A number of derivatives showed good anti-breast cancer activity, in some cases higher to that of the reference compound tamoxifen. In particular, benzocoumarins Bc-5, Bc-8 and Bc-9 strongly inhibited the proliferation of MCF-7 cancer cell line with the IC(50) values of 3.8, 7.9 and 6.5 μM, respectively. The compounds were capable of inducing nuclear fragmentation, cell cycle arrest and caspase dependent apoptosis in MCF-7 cell lines. In addition, these derivatives were devoid of cytotoxic effect against normal osteoblast cells. These synthetic benzocoumarins hold promises for developing safer alternative to the existing anti-breast cancer agents.


Bioorganic & Medicinal Chemistry Letters | 2011

Synthetic analogs of daidzein, having more potent osteoblast stimulating effect.

Dinesh Kumar Yadav; Abnish K. Gautam; Jyoti Kureel; Kamini Srivastava; Mahendra Sahai; Divya Singh; Naibedya Chattopadhyay; Rakesh Maurya

A series of didzein derivatives were synthesized and assessed for stimulation of osteoblast differentiation using primary cultures of rat calvarial osteoblasts. Data suggested that three synthetic analogs, 1c, 3a and 3c were several folds more potent than daidzein in stimulating differentiation and mineralization of osteoblasts. Further, these three compounds did not show any estrogen agonistic activity, however had mild estrogen antagonistic effect. Out of the three compounds, 3c was found to maximally increase the mineralization of bone marrow osteoprogenitor cells. Compound 3c also robustly increased the mRNA levels of osteogenic genes including bone morphogenetic protein-2 and osteocalcin in osteoblasts. Unlike daidzein, 3c did not inhibit osteoclastogenesis. Collectively, we demonstrate osteogenic activity of daidzein analogs at significantly lower concentrations than daidzein.


Menopause | 2012

Formononetin reverses established osteopenia in adult ovariectomized rats.

Abdul Malik Tyagi; Kamini Srivastava; Anuj Kumar Singh; Avinash Kumar; Bendangla Changkija; Rashmi Pandey; Shibani Lahiri; Geet Kumar Nagar; Dinesh Kumar Yadav; Rakesh Maurya; Ritu Trivedi; Divya Singh

ObjectiveFormononetin (Formo) prevents ovariectomy (Ovx)-induced bone loss in rats. However, there are no reports on the curative effects of Formo. The objective of this study was to investigate the ability of Formo in restoring trabecular microarchitecture and promoting new bone formation in osteopenic rats. MethodsAdult Sprague-Dawley rats were ovariectomized and left for 90 days for osteopenia to develop. After 90 days, Formo (10.0 mg kg−1 d−1) was given orally for the next 12 weeks to Ovx rats in a therapeutic protocol. Sham-operated, Ovx + vehicle, and Ovx + parathyroid hormone (PTH) groups served as controls. Trabecular microarchitecture, osteoid formation, bone turnover/resorption markers, and bone osteoprotegerin–to–receptor activator for nuclear &kgr;B ligand ratio were studied. One-way analysis of variance was used to test significance of effects. ResultsFormo treatment significantly restored the lost trabecular microarchitecture in the femurs and tibia of osteopenic Ovx rats and promoted new bone formation. Formo was devoid of any uterine estrogenicity. Serum levels of type I collagen N-terminal propeptide, which is a reliable marker of bone formation, were increased in Ovx rats treated with Formo compared with Ovx + vehicle group, and the levels were comparable with those in the sham group. Formo prevented the Ovx-induced increase in bone turnover markers, including serum osteocalcin and urinary type I collagen degradation product. Furthermore, Formo-treated Ovx rats had an increased bone osteoprotegerin–to–receptor activator for nuclear &kgr;B ligand ratio compared with the Ovx + vehicle group. ConclusionsDaily oral administration of Formo for 12 weeks has a substantial anabolic effect, thus raising the possibility of its use in postmenopausal osteoporosis.


Evidence-based Complementary and Alternative Medicine | 2013

Greater Skeletal Gains in Ovary Intact Rats at Maturity Are Achieved by Supplementing a Standardized Extract of Butea monosperma Stem Bark that Confers Better Bone Conserving Effect following Ovariectomy and Concurrent Treatment Withdrawal

Kamini Srivastava; Kainat Khan; Abdul Malik Tyagi; Mohd Parvez Khan; Dinesh Kumar Yadav; Ritu Trivedi; Rakesh Maurya; Divya Singh; Naibedya Chattopadhyay

With a longitudinally designed study, we tested whether an acetone soluble fraction (ASF) from the stem bark of Butea monosperma resulted in maximizing bone gain in rats during growth and maturation and thus protected against osteopenia following ovariectomy (OVx) with concomitant treatment withdrawal. Female rats at weaning were given ASF (100 mg/kg/d) or vehicle for 12 weeks, and baseline skeletal parameters (micro-CT) and total plasma antioxidant status (TAS) were measured. At this stage, one group was OVx and the other group was sham operated. Vehicle group (untreated) after OVx was given E2 or continued with vehicle (OVx control). ASF group after OVx was given vehicle (ASF withdrawn, ASFW). After another 12 weeks, all groups were killed and various skeletal parameters were determined. ASF resulted in substantially better skeletal parameters and higher plasma TAS over control at maturity. Rats treated with ASF before OVx had reduced rates of bone loss compared to OVx control. Twelve weeks after OVx, the ASFW group exhibited better trabecular microarchitectural preservation, bone turnover profiles, increased cortical deposition, and biomechanical strength over the OVx control, and the effects were comparable to OVx + E2 group. ASF supplementation during skeletal growth could maximize bone accrual and could confer increased resistance to post-OVx osteopenia despite treatment withdrawal.


Scientific Reports | 2016

IL-18BP is decreased in osteoporotic women: Prevents Inflammasome mediated IL-18 activation and reduces Th17 differentiation

Mohd Nizam Mansoori; Priyanka Shukla; Manisha Kakaji; Abdul Malik Tyagi; Kamini Srivastava; Manoj K. Shukla; Manisha Dixit; Jyoti Kureel; Sushil Gupta; Divya Singh

IL-18BP is a natural antagonist of pro-inflammatory IL-18 cytokine linked to autoimmune disorders like rheumatoid arthritis. However, its role in post menopausal osteoporosis is still unknown. In this study, we investigated the role of IL-18BP on murine osteoblasts, its effect on osteoblasts-CD4+ T cells and osteoblasts-CD11b+ macrophage co-culture. mIL-18BPd enhances osteoblast differentiation and inhibits the activation of NLRP3 inflammasome and caspase-1 which process IL-18 to its active form. Using estrogen deficient mice, we also determined the effect of mIL-18BP on various immune and skeletal parameters. Ovariectomized mice treated with mIL-18BPd exhibited decrease in Th17/Treg ratio and pro-inflammatory cytokines. mIL-18BPd treatment restored trabecular microarchitecture, preserved cortical bone parameters likely attributed to an increased number of bone lining cells and reduced osteoclastogenesis. Importantly, these results were corroborated in female osteoporotic subjects where decreased serum IL-18BP levels and enhanced serum IL-18 levels were observed. Our study forms a strong basis for using humanized IL-18BP towards the treatment of postmenopausal osteoporosis.

Collaboration


Dive into the Kamini Srivastava's collaboration.

Top Co-Authors

Avatar

Divya Singh

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar

Abdul Malik Tyagi

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Naibedya Chattopadhyay

Indian Institute of Technology Kanpur

View shared research outputs
Top Co-Authors

Avatar

Jyoti Kureel

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ritu Trivedi

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar

Mohd Nizam Mansoori

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar

Rakesh Maurya

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar

Dinesh Kumar Yadav

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar

Abnish K. Gautam

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Manisha Dixit

Central Drug Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge