Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mohd Nizam Mansoori is active.

Publication


Featured researches published by Mohd Nizam Mansoori.


PLOS ONE | 2012

Estrogen Deficiency Induces the Differentiation of IL-17 Secreting Th17 Cells: A New Candidate in the Pathogenesis of Osteoporosis

Abdul Malik Tyagi; Kamini Srivastava; Mohd Nizam Mansoori; Ritu Trivedi; Naibedya Chattopadhyay; Divya Singh

Th17 cells produce IL-17, and the latter promotes bone loss in collagen-induced arthritis in mice. Blocking IL-17 action in mouse model of rheumatoid arthritis reduces disease symptoms. These observations suggest that Th17 cells may be involved in the pathogenesis of bone loss. However, the role of Th17 cell in estrogen (E2) deficiency-induced bone loss is still not very clear. We investigated the effect of E2 on Th17 differentiation in vivo and IL-17 mediated regulation of osteoclast and osteoblast differentiation. Additionally, effect of IL-17 functional block under E2 deficiency-induced bone loss was studied. In murine bone marrow cells, E2 suppressed IL-17 mediated osteoclast differentiation. IL-17 inhibited formation of mineralized nodules in osteoblasts and this effect was suppressed by E2. E2 treatment to mouse calvarial osteoblasts inhibited the IL-17-induced production of osteoclastogenic cytokines and NF-kB translocation. In ovariectomized mice, there was increase in the number of Th17 cells, transcription factors promoting Th17 cell differentiation and circulating IL-17 levels. These effects were reversed by E2 supplementation. Treatment of neutralizing IL-17 monoclonal antibody to Ovx mice mitigated the E2 deficiency-induced trabecular bone loss and reversed the decreased osteoprotegerin-to-receptor activator of nuclear factor kappa B ligand (RANKL) transcript levels in long bones, increased osteoclast differentiation from the bone marrow precursor cells and decreased osteoblast differentiation from the bone marrow stromal cells. Our findings indicate that E2 deficiency leads to increased differentiation of Th17 cells with attendant up regulation of STAT3, ROR-γt and ROR-α and downregulation of Foxp3 which antagonizes Th17 cell differentiation. Increased IL-17 production in turn induces bone loss by increasing pro-osteoclastogenic cytokines including TNF-α, IL-6 and RANKL from osteoblasts and functional block of IL-17 prevents bone loss. IL-17 thus plays a critical causal role in Ovx-induced bone loss and may be considered a potential therapeutic target in pathogenesis of post menopausal osteoporosis.


Journal of Bone and Mineral Research | 2014

Enhanced Immunoprotective Effects by Anti‐IL‐17 Antibody Translates to Improved Skeletal Parameters Under Estrogen Deficiency Compared With Anti‐RANKL and Anti‐TNF‐α Antibodies

Abdul M. Tyagi; Mohd Nizam Mansoori; Kamini Srivastava; Mohd Parvez Khan; Jyoti Kureel; Manisha Dixit; Priyanka Shukla; Ritu Trivedi; Naibedya Chattopadhyay; Divya Singh

Activated T cell has a key role in the interaction between bone and immune system. T cells produce proinflammatory cytokines, including receptor activator of NF‐κB ligand (RANKL), tumor necrosis factor α (TNF‐α), and interleukin 17 (IL‐17), all of which augment osteoclastogenesis. RANKL and TNF‐α are targeted by inhibitors such as denosumab, a human monoclonal RANKL antibody, and infliximab, which neutralizes TNF‐α. IL‐17 is also an important mediator of bone loss, and an antibody against IL‐17 is undergoing phase II clinical trial for rheumatoid arthritis. Although there are a few studies showing suppression of Th17 cell differentiation and induction of regulatory T cells (Tregs) by infliximab, the effect of denosumab remains poorly understood. In this study, we investigated the effects of anti‐TNF‐α, anti‐RANKL, or anti‐IL‐17 antibody administration to estrogen‐deficient mice on CD4+ T‐cell proliferation, CD28 loss, Th17/Treg balance and B lymphopoesis, and finally, the translation of these immunomodulatory effects on skeletal parameters. Adult Balb/c mice were treated with anti‐RANKL/‐TNF‐α/‐IL‐17 subcutaneously, twice a week, postovariectomy (Ovx) for 4 weeks. Animals were then autopsied; bone marrow cells were collected for FACS and RNA analysis and serum collected for ELISA. Bones were dissected for static and dynamic histomorphometry studies. We observed that although anti‐RANKL and anti‐TNF‐α therapies had no effect on Ovx‐induced CD4+ T‐cell proliferation and B lymphopoesis, anti‐IL‐17 effectively suppressed both events with concomitant reversal of CD28 loss. Anti‐IL‐17 antibody reduced proinflammatory cytokine production and induced Tregs. All three antibodies restored trabecular microarchitecture with comparable efficacy; however, cortical bone parameters, bone biomechanical properties, and histomorphometry were best preserved by anti‐IL‐17 antibody, likely attributable to its inhibitory effect on osteoblast apoptosis and increased number of bone lining cells and Wnt10b expression. Based on the superior immunoprotective effects of anti‐IL‐17, which appears to translate to a better skeletal preservation, we propose beginning clinical trials using a humanized antibody against IL‐17 for treatment of postmenopausal osteoporosis.


Journal of Biological Chemistry | 2017

Interleukin 27 (IL-27) Alleviates Bone Loss in Estrogen-deficient Conditions by Induction of Early Growth Response-2 Gene

Priyanka Shukla; Mohd Nizam Mansoori; Manisha Kakaji; Manoj K. Shukla; Sushil Gupta; Divya Singh

A growing understanding of the bone remodeling process suggests that inflammation significantly contributes to the pathogenesis of osteoporosis. T cells and various cytokines contribute majorly to the estrogen deficiency-induced bone loss. Recent studies have identified the IL-12 cytokine family as consisting of pro-inflammatory IL-12 and IL-23 and the anti-inflammatory IL-27 and IL-35 cytokines. IL-27 exerts protective effects in autoimmune diseases like experimental autoimmune encephalomyelitis; however, its role in the pathogenesis of osteoporosis remains to be determined. In this report, we study the effect of IL-27 supplementation on ovariectomized estrogen-deficient mice on various immune and skeletal parameters. IL-27 treatment in ovariectomized mice suppressed Th17 cell differentiation by inhibiting transcription factor RORγt. Supplementation of IL-27 activates Egr-2 to induce IL-10 producing Tr1 cells. IL-27 treatment prevented the loss of trabecular micro-architecture and preserved cortical bone parameters. IL-27 also inhibited osteoblast apoptosis through increased Egr-2 expression, which induces anti-apoptotic factors like MCL-1. IL-27 suppressed osteoclastogenesis in an Egr-2-dependent manner that up-regulates Id2, the repressor of the receptor activator of nuclear factor-κB ligand-mediated osteoclastogenesis. Additionally, these results were corroborated in female osteoporotic subjects where we found decreased serum IL-27 levels along with reduced Egr-2 expression. Our study forms a strong basis for using humanized IL-27 toward the treatment of post-menopausal osteoporosis.


Scientific Reports | 2016

IL-18BP is decreased in osteoporotic women: Prevents Inflammasome mediated IL-18 activation and reduces Th17 differentiation

Mohd Nizam Mansoori; Priyanka Shukla; Manisha Kakaji; Abdul Malik Tyagi; Kamini Srivastava; Manoj K. Shukla; Manisha Dixit; Jyoti Kureel; Sushil Gupta; Divya Singh

IL-18BP is a natural antagonist of pro-inflammatory IL-18 cytokine linked to autoimmune disorders like rheumatoid arthritis. However, its role in post menopausal osteoporosis is still unknown. In this study, we investigated the role of IL-18BP on murine osteoblasts, its effect on osteoblasts-CD4+ T cells and osteoblasts-CD11b+ macrophage co-culture. mIL-18BPd enhances osteoblast differentiation and inhibits the activation of NLRP3 inflammasome and caspase-1 which process IL-18 to its active form. Using estrogen deficient mice, we also determined the effect of mIL-18BP on various immune and skeletal parameters. Ovariectomized mice treated with mIL-18BPd exhibited decrease in Th17/Treg ratio and pro-inflammatory cytokines. mIL-18BPd treatment restored trabecular microarchitecture, preserved cortical bone parameters likely attributed to an increased number of bone lining cells and reduced osteoclastogenesis. Importantly, these results were corroborated in female osteoporotic subjects where decreased serum IL-18BP levels and enhanced serum IL-18 levels were observed. Our study forms a strong basis for using humanized IL-18BP towards the treatment of postmenopausal osteoporosis.


PLOS ONE | 2015

Medicarpin, a Natural Pterocarpan, Heals Cortical Bone Defect by Activation of Notch and Wnt Canonical Signaling Pathways.

Manisha Dixit; Ashutosh Raghuvanshi; Chandra Prakash Gupta; Jyoti Kureel; Mohd Nizam Mansoori; Priyanka Shukla; Aijaz A. John; Kavita Singh; Dipak Purohit; Pallavi Awasthi; Divya Singh; Atul Goel

We evaluated the bone regeneration and healing effect of Medicarpin (med) in cortical bone defect model that heals by intramembranous ossification. For the study, female Sprague–Dawley rats were ovariectomized and rendered osteopenic. A drill hole injury was generated in mid femoral bones of all the animals. Med treatment was commenced the day after and continued for 15 days. PTH was taken as a reference standard. Fifteen days post-treatment, animals were sacrificed. Bones were collected for histomorphometry studies at the injury site by micro-computed tomography (μCT) and confocal microscopy. RNA and protein was harvested from newly generated bone. For immunohistochemistry, 5μm sections of decalcified femur bone adjoining the drill hole site were cut. By μCT analysis and calcein labeling of newly generated bone it was found that med promotes bone healing and new bone formation at the injury site and was comparable to PTH in many aspects. Med treatment led to increase in the Runx-2 and osteocalcin signals indicating expansion of osteoprogenitors at the injury site as evaluated by qPCR and immunohistochemical localization. It was observed that med promoted bone regeneration by activating canonical Wnt and notch signaling pathway. This was evident by increased transcript and protein levels of Wnt and notch signaling components in the defect region. Finally, we confirmed that med treatment leads to elevated bone healing in pre-osteoblasts by co localization of beta catenin with osteoblast marker alkaline phosphatase. In conclusion, med treatment promotes new bone regeneration and healing at the injury site by activating Wnt/canonical and notch signaling pathways. This study also forms a strong case for evaluation of med in delayed union and non-union fracture cases.


Phytomedicine | 2014

Ethanolic extract of Coelogyne cristata Lindley (Orchidaceae) and its compound coelogin promote osteoprotective activity in ovariectomized estrogen deficient mice

Chetan Sharma; Mohd Nizam Mansoori; Manisha Dixit; Priyanka Shukla; Tejaswita Kumari; S.P.S. Bhandari; Tadigoppula Narender; Divya Singh; Kamal Ram Arya

Coelogyne cristata Lindley (CC) family Orchidaceae is an Indian medicinal plant used for the treatment of fractured bones in folk-tradition of Kumaon region, Uttarakhand, India. In continuation of our drug discovery program, feeding of ethanolic extract to ovariectomized estrogen deficient mice led to significant restoration of trabecular micro architecture in both femoral and tibial bones, better bone quality and also devoid of any uterine estrogenicity. Subsequently, coelogin, a pure compound was isolated from ethyl acetate fraction of C. cristata and evaluated in in vitro osteoblast cell cultures. Treatment of coelogin to osteoblasts led to enhanced ALP activity (a marker of osteoblast differentiation), mineral nodule formation and mRNA levels of osteogenic markers like BMP-2, Type 1 Collagen and RUNX-2. Based on these results, we propose that ethanolic extract of C. cristata and its pure compound coelogin have potential in the management of post menopausal osteoporosis.


Bone | 2017

Combination of PTH (1-34) with anti-IL17 prevents bone loss by inhibiting IL-17/N-cadherin mediated disruption of PTHR1/LRP-6 interaction

Mohd Nizam Mansoori; Priyanka Shukla; Divya Singh

Combinations of anabolic and anti-resorptive agents have potential to improve bone density more than either agent alone. In this study, we determine the combining effect of anti-IL17 antibody and PTH (1-34) in mitigation of ovariectomy induced bone loss. Ovariectomized BALB/c female mice were treated with anti-IL17 and iPTH monotherapies and their combination. Combination of iPTH and anti-IL17 has synergistic effect in the restoration of skeletal and immune parameters compared to mono-therapies. Immunofluorescence analysis shows decreased expression of PTHR1 in iPTH+anti-IL17 treated bone sections. Our studies show that IL-17 up regulates N-cadherin which disrupts PTHR1/LRP-6 interaction thereby inhibiting wnt signaling and promoting bone loss. Our studies advocate use of iPTH and anti-IL17 combination therapy for post-menopausal osteoporosis.


Biomedicine & Pharmacotherapy | 2017

Pioglitazone-induced bone loss in diabetic rats and its amelioration by berberine: A portrait of molecular crosstalk

Mohammad Adil; Mohd Nizam Mansoori; Divya Singh; Amit D. Kandhare; Manju Sharma

Diabetes mellitus and osteoporosis both are high prevalence disorders, especially in the elderly population. Pioglitazone, a PPAR-γ agonist associated with bone loss and risk of fracture in type 2 diabetes mellitus patients. In this study, ameliorative effect of berberine against pioglitazone-induced bone loss in diabetic rats and possible mechanisms has been explored. Diabetes was induced in male Wistar albino rats by streptozotocin (65 mg/kg, i.v.) after 15min of nicotinamide (230mg/kg, i.p.) administration. Diabetic rats were treated orally with pioglitazone (10mg/kg) and berberine (100mg/kg) alone and in combination of both for 12 weeks. Femur of each rat was isolated and evaluated for the bone micro-architecture, BMD, histology and mRNA expression of PPAR-γ, AMPK, and bone turnover markers (RANKL, OPG, Runx2, and osteocalcin). Urinary calcium and serum TRAP was also measured. Treatment of pioglitazone and berberine alone and in combination significantly ameliorate abnormal blood glucose, serum insulin, and HbA1c levels in streptozotocin-induced diabetic rats. Pioglitazone treatment significantly increased urinary calcium, serum TRAP, mRNA expression of RANKL, PPAR-γ as well as significantly decreased Runx2, OPG, osteocalcin and AMPK levels in diabetic rats. Pioglitazone administration also shows detrimental effect on femur epiphysis micro-architecture, BMD and histology. Whereas, berberine treatment alone and in combination with pioglitazone remarkably ameliorates the abnormal urinary calcium, mRNA expression of AMPK, bone turnover markers, femur epiphysis micro-architecture, histology and also increases BMD in diabetic rats. In conclusion, berberine shows protective effect against pioglitazone-induced bone loss in diabetic rats possibly through AMPK activation pathway.


Menopause | 2016

Methoxyisoflavones formononetin and isoformononetin inhibit the differentiation of Th17 cells and B-cell lymphopoesis to promote osteogenesis in estrogen-deficient bone loss conditions.

Mohd Nizam Mansoori; Abdul Malik Tyagi; Priyanka Shukla; Kamini Srivastava; Kapil Dev; Raju Chillara; Rakesh Maurya; Divya Singh

Objective:Recent studies have shown that immune system plays a major role in pathophysiology of postmenopausal osteoporosis. Previously we have shown that phytoestrogens like daidzein and medicarpin exhibit immunoprotective effects, by virtue of which they alleviate bone loss. With this background, methoxyisoflavones like formononetin (formo) and isoformononetin (isoformo) that have been studied for preventing bone loss in ovariectomized rats were tested for their immunomodulatory effects in estrogen-deficient bone loss mice model. Methods:Adult Balb/c mice (N = 8/group) were given oral dose of formo and isoformo at 10 mg/kg body weight, post ovariectomy (Ovx) daily for 6 weeks. Animals were autopsied and long bones were harvested to study bone microarchitecture. Peripheral blood mononuclear cells were isolated for fluorescence-activated cell sorting and RNA analysis. Serum was collected for enzyme-linked immunosorbent assay. Results:It was observed that formo and isoformo treatment to Ovx mice led to significant restoration of Ovx-induced deterioration of trabecular microarchitecture. Pro-osteoclastogenic subset Th17 and B cells were decreased in formo/isoformo-treated Ovx mice in comparison with vehicle-treated Ovx group. Formo and isoformo treatment to Ovx mice also led to decreased expression of Th17 diffentiation factors and promoted T-regulatory cell differentiation. Formo was more effective in enhancing the FOXP3 expression compared with isoformo. IL-17A-induced osteoclastogenesis and inhibition of osteoblast apoptosis were also suppressed by formo and isoformo treatment, with formo having a more potent effect. Conclusions:Our study demonstrates the immunomodulatory activity of methoxyisoflavones, formo, and isoformo, which translate into improved skeletal parameters, thereby preventing Ovx-induced bone loss.


Journal of Ethnopharmacology | 2015

Potential osteogenic activity of ethanolic extract and oxoflavidin isolated from Pholidota articulata Lindley.

Chetan Sharma; Manisha Dixit; Rohit Singh; Manali Agrawal; Mohd Nizam Mansoori; Jyoti Kureel; Divya Singh; Tadigoppula Narender; Kamal Ram Arya

ETHNOPHARMACOLOGICAL RELEVANCE Pholidota articulata Lindley (PA) locally known as Hadjojen (bone jointer) belongs to family Orchidaceae is used for healing fractures in folklore tradition of Kumaon region of Uttarakhand, Himalaya, India. Bone is a dynamic organ and is constantly being remodeled in order to facilitate growth and repair. This process requires the involvement of bone forming osteoblast and bone resorbing osteoclast cells, which function in generating and mineralizing bone, giving strength and rigidity to the skeletal system. Present study was aimed to determine the therapeutic potential of ethanolic extract of PA and its isolated compound oxoflavidin, by characterizing their fracture healing properties. MATERIALS AND METHODS Ovariectomized (Ovx) estrogen deficient adult female Balb/c mice were used for in vivo evaluation of osteogenic or bone healing potential of ethanolic extract of PA. Further, its isolated compounds were tested for their osteogenic efficacy using alkaline phosphatase assay and mineralization assay in vitro in mice calvarial osteoblasts. RESULTS The ethanolic extract of PA exhibited significant restoration of trabecular micro-architecture in both femoral and tibial bones. Additionally, treatment with PA extract led to better bone quality and devoid of any uterine estrogenicity in ovariectomized estrogen deficient mice. One of the isolated compound, oxoflavidin enhanced ALP activity (a marker of osteoblast differentiation), mineral nodule formation and mRNA levels of osteogenic markers like BMP-2, Type 1 Collagen, RUNX-2 and osteocalcin. CONCLUSION These results warrant that ethanolic extract of PA and its pure compound oxoflavidin have fracture healing properties. The extract and oxoflavidin exhibit a strong threapeutical potential for the treatment and management of postmenopausal osteoporosis.

Collaboration


Dive into the Mohd Nizam Mansoori's collaboration.

Top Co-Authors

Avatar

Divya Singh

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar

Priyanka Shukla

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jyoti Kureel

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar

Kamini Srivastava

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar

Manisha Dixit

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar

Abdul Malik Tyagi

Council of Scientific and Industrial Research

View shared research outputs
Top Co-Authors

Avatar

Abdul M. Tyagi

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ashutosh Raghuvanshi

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar

Atul Goel

Central Drug Research Institute

View shared research outputs
Top Co-Authors

Avatar

Ritu Trivedi

Central Drug Research Institute

View shared research outputs
Researchain Logo
Decentralizing Knowledge