Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kan Fujino is active.

Publication


Featured researches published by Kan Fujino.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Inhibition of Borna disease virus replication by an endogenous bornavirus-like element in the ground squirrel genome

Kan Fujino; Masayuki Horie; Tomoyuki Honda; Dana K. Merriman; Keizo Tomonaga

Significance Sequences derived from ancient viruses have been shown to make up a substantial part of animal genomes. Bornaviruses, a genus of nonsegmented, negative-sense RNA virus, also have left their DNA copies in the genomes of a number of vertebrate lineages. Recent studies have demonstrated that some endogenous bornavirus-like elements (EBLs) may have acquired functions in their hosts as a result of exaptation. In this study, we show that protein encoded by an EBL in the genome of the thirteen-lined ground squirrel efficiently blocks infection and replication of extant bornavirus. To our knowledge, this is the first report showing that endogenous nonretroviral RNA virus elements may function in antiviral defense, providing a potential role for RNA virus endogenization in host evolution. Animal genomes contain endogenous viral sequences, such as endogenous retroviruses and retrotransposons. Recently, we and others discovered that nonretroviral viruses also have been endogenized in many vertebrate genomes. Bornaviruses belong to the Mononegavirales and have left endogenous fragments, called “endogenous bornavirus-like elements” (EBLs), in the genomes of many mammals. The striking features of EBLs are that they contain relatively long ORFs which have high sequence homology to the extant bornavirus proteins. Furthermore, some EBLs derived from bornavirus nucleoprotein (EBLNs) have been shown to be transcribed as mRNA and probably are translated into proteins. These features lead us to speculate that EBLs may function as cellular coopted genes. An EBLN element in the genome of the thirteen-lined ground squirrel (Ictidomys tridecemlineatus), itEBLN, encodes an ORF with 77% amino acid sequence identity to the current bornavirus nucleoprotein. In this study, we cloned itEBLN from the ground squirrel genome and investigated its involvement in Borna disease virus (BDV) replication. Interestingly, itEBLN, but not a human EBLN, colocalized with the viral factory in the nucleus and appeared to affect BDV polymerase activity by being incorporated into the viral ribonucleoprotein. Our data show that, as do certain endogenous retroviruses, itEBLN potentially may inhibit infection by related exogenous viruses in vivo.


Cell Host & Microbe | 2012

Bornavirus closely associates and segregates with host chromosomes to ensure persistent intranuclear infection.

Yusuke Matsumoto; Yohei Hayashi; Hiroko Omori; Tomoyuki Honda; Takuji Daito; Masayuki Horie; Kazuyoshi Ikuta; Kan Fujino; Shoko Nakamura; Urs Schneider; Geoffrey Chase; Tamotsu Yoshimori; Martin Schwemmle; Keizo Tomonaga

Bornaviruses are nonsegmented negative-strand RNA viruses that establish a persistent infection in the nucleus and occasionally integrate a DNA genome copy into the host chromosomal DNA. However, how these viruses achieve intranuclear infection remains unclear. We show that Borna disease virus (BDV), a mammalian bornavirus, closely associates with the cellular chromosome to ensure intranuclear infection. BDV generates viral factories within the nucleus using host chromatin as a scaffold. In addition, the viral ribonucleoprotein (RNP) interacts directly with the host chromosome throughout the cell cycle, using core histones as a docking platform. HMGB1, a host chromatin-remodeling DNA architectural protein, is required to stabilize RNP on chromosomes and for efficient BDV RNA transcription in the nucleus. During metaphase, the association of RNP with mitotic chromosomes allows the viral RNA to segregate into daughter cells and ensure persistent infection. Thus, bornaviruses likely evolved a chromosome-dependent life cycle to achieve stable intranuclear infection.


RNA | 2015

piRNAs derived from ancient viral processed pseudogenes as transgenerational sequence-specific immune memory in mammals

Nicholas F. Parrish; Kan Fujino; Yusuke Shiromoto; Yuka W. Iwasaki; Hong-Seok Ha; Jinchuan Xing; Akiko Makino; Satomi Kuramochi-Miyagawa; Toru Nakano; Haruhiko Siomi; Tomoyuki Honda; Keizo Tomonaga

Endogenous bornavirus-like nucleoprotein elements (EBLNs) are sequences within vertebrate genomes derived from reverse transcription and integration of ancient bornaviral nucleoprotein mRNA via the host retrotransposon machinery. While species with EBLNs appear relatively resistant to bornaviral disease, the nature of this association is unclear. We hypothesized that EBLNs could give rise to antiviral interfering RNA in the form of PIWI-interacting RNAs (piRNAs), a class of small RNA known to silence transposons but not exogenous viruses. We found that in both rodents and primates, which acquired their EBLNs independently some 25-40 million years ago, EBLNs are present within piRNA-generating regions of the genome far more often than expected by chance alone (ℙ = 8 × 10(-3)-6 × 10(-8)). Three of the seven human EBLNs fall within annotated piRNA clusters and two marmoset EBLNs give rise to bona fide piRNAs. In both rats and mice, at least two of the five EBLNs give rise to abundant piRNAs in the male gonad. While no EBLNs are syntenic between rodent and primate, some of the piRNA clusters containing EBLNs are; thus we deduce that EBLNs were integrated into existing piRNA clusters. All true piRNAs derived from EBLNs are antisense relative to the proposed ancient bornaviral nucleoprotein mRNA. These observations are consistent with a role for EBLN-derived piRNA-like RNAs in interfering with ancient bornaviral infection. They raise the hypothesis that retrotransposon-dependent virus-to-host gene flow could engender RNA-mediated, sequence-specific antiviral immune memory in metazoans analogous to the CRISPR/Cas system in prokaryotes.


Journal of Virology | 2011

A Novel Borna Disease Virus Vector System That Stably Expresses Foreign Proteins from an Intercistronic Noncoding Region

Takuji Daito; Kan Fujino; Tomoyuki Honda; Yusuke Matsumoto; Yohei Watanabe; Keizo Tomonaga

ABSTRACT Borna disease virus (BDV), a nonsegmented, negative-strand RNA virus, infects a wide variety of mammalian species and readily establishes a long-lasting, persistent infection in brain cells. Therefore, this virus could be a promising candidate as a novel RNA virus vector enabling stable gene expression in the central nervous system (CNS). Previous studies demonstrated that the 5′ untranslated region of the genome is the only site for insertion and expression of a foreign gene. In this study, we established a novel BDV vector in which an additional transcription cassette has been inserted into an intercistronic noncoding region between the viral phosphoprotein (P) and matrix (M) genes. The recombinant BDV (rBDV) carrying green fluorescent protein (GFP) between the P and M genes, rBDV P/M-GFP, expressed GFP efficiently in cultured cells and rodent brains for a long period of time without attenuation. Furthermore, we generated a nonpropagating rBDV, ΔGLLP/M, which lacks the envelope glycoprotein (G) and a splicing intron within the polymerase gene (L), by the transcomplementation system with either transient or stable expression of the G gene. Interestingly, rBDV ΔGLLP/M established a persistent infection in cultured cells with stable expression of GFP in the absence of the expression of G. Using persistently infected rBDV ΔGLLP/M-infected cells, we determined the amino acid region in the cytoplasmic tail (CT) of BDV G important for the release of infectious rBDV particles and also demonstrated that the CT region may be critical for the generation of pseudotyped rBDV having vesicular stomatitis virus G protein. Our results revealed that the newly established BDV vector constitutes an alternative tool not only for stable expression of foreign genes in the CNS but also for understanding the mechanism of the release of enveloped virions.


Journal of Virology | 2011

Upregulation of Insulin-Like Growth Factor Binding Protein 3 in Astrocytes of Transgenic Mice That Express Borna Disease Virus Phosphoprotein

Tomoyuki Honda; Kan Fujino; Daisuke Okuzaki; Naohiro Ohtaki; Yusuke Matsumoto; Masayuki Horie; Takuji Daito; Masayuki Itoh; Keizo Tomonaga

ABSTRACT In a previous study, we demonstrated that transgenic mice that express Borna disease virus (BDV) phosphoprotein (P) in astrocytes show striking neurobehavioral abnormalities resembling those in BDV-infected animals. To understand the molecular disturbances induced by the expression of P in astrocytes, we performed microarray analysis with cultured astroglial cells transiently expressing P. We showed that expression of insulin-like growth factor binding protein 3 mRNA increases not only in P-expressing cultured cells but also in astrocytes from the cerebella of P transgenic mice (P-Tg). Furthermore, we demonstrated that insulin-like growth factor signaling is disturbed in the P-Tg cerebellum, a factor that might be involved in the increased vulnerability of Purkinje cell neurons in the brain.


Scientific Reports | 2016

An RNA-dependent RNA polymerase gene in bat genomes derived from an ancient negative-strand RNA virus

Masayuki Horie; Yuki Kobayashi; Tomoyuki Honda; Kan Fujino; Takumi Akasaka; Gudrun Wibbelt; Kristin Mühldorfer; Andreas Kurth; Marcel A. Müller; Victor Max Corman; Nadine Gillich; Yoshiyuki Suzuki; Martin Schwemmle; Keizo Tomonaga

Endogenous bornavirus-like L (EBLL) elements are inheritable sequences derived from ancient bornavirus L genes that encode a viral RNA-dependent RNA polymerase (RdRp) in many eukaryotic genomes. Here, we demonstrate that bats of the genus Eptesicus have preserved for more than 11.8 million years an EBLL element named eEBLL-1, which has an intact open reading frame of 1,718 codons. The eEBLL-1 coding sequence revealed that functional motifs essential for mononegaviral RdRp activity are well conserved in the EBLL-1 genes. Genetic analyses showed that natural selection operated on eEBLL-1 during the evolution of Eptesicus. Notably, we detected efficient transcription of eEBLL-1 in tissues from Eptesicus bats. To the best of our knowledge, this study is the first report showing that the eukaryotic genome has gained a riboviral polymerase gene from an ancient virus that has the potential to encode a functional RdRp.


PLOS ONE | 2012

Evolutionarily Conserved Interaction between the Phosphoproteins and X Proteins of Bornaviruses from Different Vertebrate Species

Kan Fujino; Masayuki Horie; Tomoyuki Honda; Shoko Nakamura; Yusuke Matsumoto; Ivo M. B. Francischetti; Keizo Tomonaga

Bornavirus, a non-segmented, negative-strand RNA viruses, is currently classified into several genetically distinct genotypes, such as Borna disease virus (BDV) and avian bornaviruses (ABVs). Recent studies revealed that bornavirus genotypes show unique sequence variability in the putative 5′ untranslated region (5′ UTR) of X/P mRNA, a bicistronic mRNA for the X protein and phosphoprotein (P). In this study, to understand the evolutionary relationship among the bornavirus genotypes, we investigated the functional interaction between the X and P proteins of four bornavirus genotypes, BDV, ABV genotype 4 and 5 and reptile bornavirus (RBV), the putative 5′ UTRs of which exhibit variation in the length. Immunofluorescence and immunoprecipitation analyses using mammalian and avian cell lines revealed that the X proteins of bornaviruses conserve the ability to facilitate the export of P from the nucleus to the cytoplasm via interaction with P. Furthermore, we showed that inter-genotypic interactions may occur between X and P among the genotypes, except for X of RBV. In addition, a BDV minireplicon assay demonstrated that the X and P proteins of ABVs, but not RBV, can affect the polymerase activity of BDV. This study demonstrates that bornaviruses may have conserved the fundamental function of a regulatory protein during their evolution, whereas RBV has evolved distinctly from the other bornavirus genotypes.


Virus Genes | 2013

Molecular epidemiology of avian bornavirus from pet birds in Japan

Yukiko Sassa; Masayuki Horie; Kan Fujino; Naomi Nishiura; Sachiko Okazaki; Tetsuya Furuya; Makoto Nagai; Tsutomu Omatsu; Atsushi Kojima; Masaya Mizugami; Kengo Ueda; Haruko Iki; Kazumasa Ebisawa; Keizo Tomonaga; Tetsuya Mizutani

Recently, Avian bornavirus (ABV) was detected in proventricular dilatation disease (PDD) affected-birds and feather picking diseases affected-birds. However, the pathogenicity of ABV has not been thoroughly investigated. In this study, we surveyed ABV in pet birds in Japan. We found four ABV-infected birds among 93 pet birds using RT-PCR, and genotypes of the ABV were determined as ABV-2 and -4. Two of the birds positive for ABV-4 showed proventricular dilatation typically found in PDD, and chronic stomach disturbance, whereas two of the birds positive for ABV-2 showed unexplained behavioral problems that are tapping, autophagia, and cloaca prolapse.


Scientific Reports | 2015

Borna disease virus possesses an NF-ĸB inhibitory sequence in the nucleoprotein gene

Akiko Makino; Kan Fujino; Nicholas F. Parrish; Tomoyuki Honda; Keizo Tomonaga

Borna disease virus (BDV) has a non-segmented, negative-stranded RNA genome and causes persistent infection in many animal species. Previous study has shown that the activation of the IκB kinase (IKK)/NF-κB pathway is reduced by BDV infection even in cells expressing constitutively active mutant IKK. This result suggests that BDV directly interferes with the IKK/NF-κB pathway. To elucidate the mechanism for the inhibition of NF-κB activation by BDV infection, we evaluated the cross-talk between BDV infection and the NF-κB pathway. Using Multiple EM for Motif Elicitation analysis, we found that the nucleoproteins of BDV (BDV-N) and NF-κB1 share a common ankyrin-like motif. When THP1-CD14 cells were pre-treated with the identified peptide, NF-κB activation by Toll-like receptor ligands was suppressed. The 20S proteasome assay showed that BDV-N and BDV-N-derived peptide inhibited the processing of NF-κB1 p105 into p50. Furthermore, immunoprecipitation assays showed that BDV-N interacted with NF-κB1 but not with NF-κB2, which shares no common motif with BDV-N. These results suggest BDV-N inhibits NF-κB1 processing by the 20S proteasome through its ankyrin-like peptide sequence, resulting in the suppression of IKK/NF-κB pathway activation. This inhibitory effect of BDV on the induction of the host innate immunity might provide benefits against persistent BDV infection.


Microbiology and Immunology | 2017

Generation of a non-transmissive Borna disease virus vector lacking both matrix and glycoprotein genes

Kan Fujino; Yusuke Yamamoto; Takuji Daito; Akiko Makino; Tomoyuki Honda; Keizo Tomonaga

Borna disease virus (BoDV), a prototype of mammalian bornavirus, is a non‐segmented, negative strand RNA virus that often causes severe neurological disorders in infected animals, including horses and sheep. Unique among animal RNA viruses, BoDV transcribes and replicates non‐cytopathically in the cell nucleus, leading to establishment of long‐lasting persistent infection. This striking feature of BoDV indicates its potential as an RNA virus vector system. It has previously been demonstrated by our team that recombinant BoDV (rBoDV) lacking an envelope glycoprotein (G) gene develops persistent infections in transduced cells without loss of the viral genome. In this study, a novel non‐transmissive rBoDV, rBoDV ΔMG, which lacks both matrix (M) and G genes in the genome, is reported. rBoDV‐ΔMG expressing green fluorescence protein (GFP), rBoDV ΔMG‐GFP, was efficiently generated in Vero/MG cells stably expressing both BoDV M and G proteins. Infection with rBoDV ΔMG‐GFP was persistently maintained in the parent Vero cells without propagation within cell culture. The optimal ratio of M and G for efficient viral particle production by transient transfection of M and G expression plasmids into cells persistently infected with rBoDV ΔMG‐GFP was also demonstrated. These findings indicate that the rBoDV ΔMG‐based BoDV vector may provide an extremely safe virus vector system and could be a novel strategy for investigating the function of M and G proteins and the host range of bornaviruses.

Collaboration


Dive into the Kan Fujino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge