Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Masayuki Horie is active.

Publication


Featured researches published by Masayuki Horie.


Nature | 2010

Endogenous non-retroviral RNA virus elements in mammalian genomes

Masayuki Horie; Tomoyuki Honda; Yoshiyuki Suzuki; Yuki Kobayashi; Takuji Daito; Tatsuo Oshida; Kazuyoshi Ikuta; Patric Jern; Takashi Gojobori; John M. Coffin; Keizo Tomonaga

Retroviruses are the only group of viruses known to have left a fossil record, in the form of endogenous proviruses, and approximately 8% of the human genome is made up of these elements. Although many other viruses, including non-retroviral RNA viruses, are known to generate DNA forms of their own genomes during replication, none has been found as DNA in the germline of animals. Bornaviruses, a genus of non-segmented, negative-sense RNA virus, are unique among RNA viruses in that they establish persistent infection in the cell nucleus. Here we show that elements homologous to the nucleoprotein (N) gene of bornavirus exist in the genomes of several mammalian species, including humans, non-human primates, rodents and elephants. These sequences have been designated endogenous Borna-like N (EBLN) elements. Some of the primate EBLNs contain an intact open reading frame (ORF) and are expressed as mRNA. Phylogenetic analyses showed that EBLNs seem to have been generated by different insertional events in each specific animal family. Furthermore, the EBLN of a ground squirrel was formed by a recent integration event, whereas those in primates must have been formed more than 40 million years ago. We also show that the N mRNA of a current mammalian bornavirus, Borna disease virus (BDV), can form EBLN-like elements in the genomes of persistently infected cultured cells. Our results provide the first evidence for endogenization of non-retroviral virus-derived elements in mammalian genomes and give novel insights not only into generation of endogenous elements, but also into a role of bornavirus as a source of genetic novelty in its host.


Archives of Virology | 2016

Taxonomy of the order Mononegavirales: update 2016

Claudio L. Afonso; Gaya K. Amarasinghe; Krisztián Bányai; Yīmíng Bào; Christopher F. Basler; Sina Bavari; Nicolás Bejerman; Kim R. Blasdell; François Xavier Briand; Thomas Briese; Alexander Bukreyev; Charles H. Calisher; Kartik Chandran; Jiāsēn Chéng; Anna N. Clawson; Peter L. Collins; Ralf G. Dietzgen; Olga Dolnik; Leslie L. Domier; Ralf Dürrwald; John M. Dye; Andrew J. Easton; Hideki Ebihara; Szilvia L. Farkas; Juliana Freitas-Astúa; Pierre Formenty; Ron A. M. Fouchier; Yànpíng Fù; Elodie Ghedin; Michael M. Goodin

In 2016, the order Mononegavirales was emended through the addition of two new families (Mymonaviridae and Sunviridae), the elevation of the paramyxoviral subfamily Pneumovirinae to family status (Pneumoviridae), the addition of five free-floating genera (Anphevirus, Arlivirus, Chengtivirus, Crustavirus, and Wastrivirus), and several other changes at the genus and species levels. This article presents the updated taxonomy of the order Mononegavirales as now accepted by the International Committee on Taxonomy of Viruses (ICTV).


Proceedings of the National Academy of Sciences of the United States of America | 2014

Inhibition of Borna disease virus replication by an endogenous bornavirus-like element in the ground squirrel genome

Kan Fujino; Masayuki Horie; Tomoyuki Honda; Dana K. Merriman; Keizo Tomonaga

Significance Sequences derived from ancient viruses have been shown to make up a substantial part of animal genomes. Bornaviruses, a genus of nonsegmented, negative-sense RNA virus, also have left their DNA copies in the genomes of a number of vertebrate lineages. Recent studies have demonstrated that some endogenous bornavirus-like elements (EBLs) may have acquired functions in their hosts as a result of exaptation. In this study, we show that protein encoded by an EBL in the genome of the thirteen-lined ground squirrel efficiently blocks infection and replication of extant bornavirus. To our knowledge, this is the first report showing that endogenous nonretroviral RNA virus elements may function in antiviral defense, providing a potential role for RNA virus endogenization in host evolution. Animal genomes contain endogenous viral sequences, such as endogenous retroviruses and retrotransposons. Recently, we and others discovered that nonretroviral viruses also have been endogenized in many vertebrate genomes. Bornaviruses belong to the Mononegavirales and have left endogenous fragments, called “endogenous bornavirus-like elements” (EBLs), in the genomes of many mammals. The striking features of EBLs are that they contain relatively long ORFs which have high sequence homology to the extant bornavirus proteins. Furthermore, some EBLs derived from bornavirus nucleoprotein (EBLNs) have been shown to be transcribed as mRNA and probably are translated into proteins. These features lead us to speculate that EBLs may function as cellular coopted genes. An EBLN element in the genome of the thirteen-lined ground squirrel (Ictidomys tridecemlineatus), itEBLN, encodes an ORF with 77% amino acid sequence identity to the current bornavirus nucleoprotein. In this study, we cloned itEBLN from the ground squirrel genome and investigated its involvement in Borna disease virus (BDV) replication. Interestingly, itEBLN, but not a human EBLN, colocalized with the viral factory in the nucleus and appeared to affect BDV polymerase activity by being incorporated into the viral ribonucleoprotein. Our data show that, as do certain endogenous retroviruses, itEBLN potentially may inhibit infection by related exogenous viruses in vivo.


Cell Host & Microbe | 2012

Bornavirus closely associates and segregates with host chromosomes to ensure persistent intranuclear infection.

Yusuke Matsumoto; Yohei Hayashi; Hiroko Omori; Tomoyuki Honda; Takuji Daito; Masayuki Horie; Kazuyoshi Ikuta; Kan Fujino; Shoko Nakamura; Urs Schneider; Geoffrey Chase; Tamotsu Yoshimori; Martin Schwemmle; Keizo Tomonaga

Bornaviruses are nonsegmented negative-strand RNA viruses that establish a persistent infection in the nucleus and occasionally integrate a DNA genome copy into the host chromosomal DNA. However, how these viruses achieve intranuclear infection remains unclear. We show that Borna disease virus (BDV), a mammalian bornavirus, closely associates with the cellular chromosome to ensure intranuclear infection. BDV generates viral factories within the nucleus using host chromatin as a scaffold. In addition, the viral ribonucleoprotein (RNP) interacts directly with the host chromosome throughout the cell cycle, using core histones as a docking platform. HMGB1, a host chromatin-remodeling DNA architectural protein, is required to stabilize RNP on chromosomes and for efficient BDV RNA transcription in the nucleus. During metaphase, the association of RNP with mitotic chromosomes allows the viral RNA to segregate into daughter cells and ensure persistent infection. Thus, bornaviruses likely evolved a chromosome-dependent life cycle to achieve stable intranuclear infection.


Philosophical Transactions of the Royal Society B | 2013

Comprehensive analysis of endogenous bornavirus-like elements in eukaryote genomes

Masayuki Horie; Yuki Kobayashi; Yoshiyuki Suzuki; Keizo Tomonaga

Bornaviruses are the only animal RNA viruses that establish a persistent infection in their host cell nucleus. Studies of bornaviruses have provided unique information about viral replication strategies and virus–host interactions. Although bornaviruses do not integrate into the host genome during their replication cycle, we and others have recently reported that there are DNA sequences derived from the mRNAs of ancient bornaviruses in the genomes of vertebrates, including humans, and these have been designated endogenous borna-like (EBL) elements. Therefore, bornaviruses have been interacting with their hosts as driving forces in the evolution of host genomes in a previously unexpected way. Studies of EBL elements have provided new models for virology, evolutionary biology and general cell biology. In this review, we summarize the data on EBL elements including what we have newly identified in eukaryotes genomes, and discuss the biological significance of EBL elements, with a focus on EBL nucleoprotein elements in mammalian genomes. Surprisingly, EBL elements were detected in the genomes of invertebrates, suggesting that the host range of bornaviruses may be much wider than previously thought. We also review our new data on non-retroviral integration of Borna disease virus.


Veterinary Microbiology | 2013

Avian bornaviruses are widely distributed in canary birds (Serinus canaria f. domestica)

Dennis Rubbenstroth; Monika Rinder; Malte Stein; Dirk Höper; Bernd Kaspers; Katrin Brosinski; Masayuki Horie; Volker Schmidt; Marko Legler; Rüdiger Korbel; Peter Staeheli

Avian bornavirus (ABV) was identified in 2008 as the causative agent of proventricular dilatation disease (PDD) in psittacine birds. In addition, ABV variants were detected in wild waterfowl and in a canary bird. PDD-like diseases were also reported in various other avian species, but it remains unknown whether ABV is involved. In this study we detected ABV in 12 of 30 tested canary bird flocks (40%), indicating a wide distribution of ABV in captive canary birds in Germany. Sequence analysis identified several distinct ABV genotypes which differ markedly from the genotypes present in psittacine birds. Some canaries naturally infected with ABV exhibited gastrointestinal and neurological symptoms which resembled PDD in psittacines, while others did not show signs of disease. Canaries experimentally inoculated with ABV developed infections of the brain and various other organs. The experimentally infected canaries transmitted the virus to sentinel birds kept in the same aviary, but did not show any clinical signs during a five month observation period. Embryonated eggs originating from ABV-infected hens contained ABV-specific RNA, but virus could not be re-isolated from embryonic tissue. These results indicate that ABV is widely distributed in canary birds and due to its association to clinical signs should be considered as a potential pathogen of this species.


Journal of Virology | 2009

Molecular Chaperone BiP Interacts with Borna Disease Virus Glycoprotein at the Cell Surface

Tomoyuki Honda; Masayuki Horie; Takuji Daito; Kazuyoshi Ikuta; Keizo Tomonaga

ABSTRACT Borna disease virus (BDV) is characterized by highly neurotropic infection. BDV enters its target cells using virus surface glycoprotein (G), but the cellular molecules mediating this process remain to be elucidated. We demonstrate here that the N-terminal product of G, GP1, interacts with the 78-kDa chaperone protein BiP. BiP was found at the surface of BDV-permissive cells, and anti-BiP antibody reduced BDV infection as well as GP1 binding to the cell surface. We also reveal that BiP localizes at the synapse of neurons. These results indicate that BiP may participate in the cell surface association of BDV.


Eurosurveillance | 2015

Genetic diversity of highly pathogenic H5N8 avian influenza viruses at a single overwintering site of migratory birds in Japan, 2014/15.

Makoto Ozawa; Aya Matsuu; Tokorozaki K; Masayuki Horie; Tatsunori Masatani; Nakagawa H; Kosuke Okuya; Toshiko Kawabata; Toda S

We isolated eight highly pathogenic H5N8 avian influenza viruses (H5N8 HPAIVs) in the 2014/15 winter season at an overwintering site of migratory birds in Japan. Genetic analyses revealed that these isolates were divided into three groups, indicating the co-circulation of three genetic groups of H5N8 HPAIV among these migratory birds. These results also imply the possibility of global redistribution of the H5N8 HPAIVs via the migration of these birds next winter.


Viruses | 2011

Non-Retroviral Fossils in Vertebrate Genomes

Masayuki Horie; Keizo Tomonaga

Although no physical fossils of viruses have been found, retroviruses are known to leave their molecular fossils in the genomes of their hosts, the so-called endogenous retroviral elements. These have provided us with important information about retroviruses in the past and their co-evolution with their hosts. On the other hand, because non-retroviral viruses were considered not to leave such fossils, even the existence of prehistoric non-retroviral viruses has been enigmatic. Recently, we discovered that elements derived from ancient bornaviruses, non-segmented, negative strand RNA viruses, are found in the genomes of several mammalian species, including humans. In addition, at approximately the same time, several endogenous elements of RNA viruses, DNA viruses and reverse-transcribing DNA viruses have been independently reported, which revealed that non-retroviral viruses have played significant roles in the evolution of their hosts and provided novel insights into virology and cell biology. Here we review non-retroviral virus-like elements in vertebrate genomes, non-retroviral integration and the knowledge obtained from these endogenous non-retroviral virus-like elements.


Microbes and Infection | 2009

Heat shock cognate protein 70 controls Borna disease virus replication via interaction with the viral non-structural protein X.

Yohei Hayashi; Masayuki Horie; Takuji Daito; Tomoyuki Honda; Kazuyoshi Ikuta; Keizo Tomonaga

Borna disease virus (BDV) is a non-segmented, negative-sense RNA virus and has the property of persistently infecting the cell nucleus. BDV encodes a 10-kDa non-structural protein, X, which is a negative regulator of viral polymerase activity but is essential for virus propagation. Recently, we have demonstrated that interaction of X with the viral polymerase cofactor, phosphoprotein (P), facilitates translocation of P from the nucleus to the cytoplasm. However, the mechanism by which the intracellular localization of X is controlled remains unclear. In this report, we demonstrate that BDV X interacts with the 71kDa molecular chaperon protein, Hsc70. Immunoprecipitation assays revealed that Hsc70 associates with the same region of X as P and, interestingly, that expression of P interferes competitively with the interaction between X and Hsc70. A heat shock experiment revealed that BDV X translocates into the nucleus, dependent upon the nuclear accumulation of Hsc70. Furthermore, we show that knockdown of Hsc70 by short interfering RNA decreases the nuclear localization of both X and P and markedly reduces the expression of viral genomic RNA in persistently infected cells. These data indicate that Hsc70 may be involved in viral replication by regulating the intracellular distribution of X.

Collaboration


Dive into the Masayuki Horie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge