Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kandamurugu Manickam is active.

Publication


Featured researches published by Kandamurugu Manickam.


Autism Research | 2010

Confirmation study of PTEN mutations among individuals with autism or developmental delays/mental retardation and macrocephaly.

Kim L. McBride; Elizabeth A. Varga; Matthew Pastore; Thomas W. Prior; Kandamurugu Manickam; Joan F. Atkin; Gail E. Herman

There is a strong genetic component to autism spectrum disorders (ASD), but due to significant genetic heterogeneity, individual genetic abnormalities contribute a small percentage to the overall total. Previous studies have demonstrated PTEN mutations in a sizable proportion of individuals with ASD or mental retardation/developmental delays (MR/DD) and macrocephaly that do not have features of Cowden or Bannayan–Riley–Ruvalcaba syndrome. This study was performed to confirm our previous results. We reviewed the charts of individuals who had PTEN clinical sequencing performed at our institution from January 2008 to July 2009. There were 93 subjects tested from our institution during that period. PTEN mutations were found in 2/39 (5.1%) ASD patients and 2/51 (3.9%) MR/DD patients. Three additional patients without mutations had no diagnostic information. Multiple relatives of individuals with a PTEN mutation had macrocephaly, MR, or early onset cancer (breast, renal, and prostate). Of those relatives tested, all had the familial PTEN mutation. None of the affected relatives had previously been diagnosed with Cowden or Bannayan–Riley–Ruvalcaba syndrome. We noted in our previous study several adult relatives without any findings who carried a mutation. Combined with data from our previous cohort, we have found PTEN mutations in 7/99 (7.1%) of individuals with ASD and 8/100 (8.0%) of individuals with MR/DD, all of whom had macrocephaly. We recommend testing for mutations in PTEN for individuals with ASD or MR/DD and macrocephaly. If mutations are found, other family members should be offered testing and the adults offered cancer screening if they have a PTEN mutation.


Science | 2016

Genetic identification of familial hypercholesterolemia within a single U.S. health care system

Noura S. Abul-Husn; Kandamurugu Manickam; Laney K. Jones; Eric A. Wright; Dustin N. Hartzel; Claudia Gonzaga-Jauregui; Colm O’Dushlaine; Joseph B. Leader; H. Lester Kirchner; D’Andra M. Lindbuchler; Marci L Barr; Monica A. Giovanni; Marylyn D. Ritchie; John D. Overton; Jeffrey G. Reid; Raghu Metpally; Amr H. Wardeh; Ingrid B. Borecki; George D. Yancopoulos; Aris Baras; Alan R. Shuldiner; Omri Gottesman; David H. Ledbetter; David J. Carey; Frederick E. Dewey; Michael F. Murray

Unleashing the power of precision medicine Precision medicine promises the ability to identify risks and treat patients on the basis of pathogenic genetic variation. Two studies combined exome sequencing results for over 50,000 people with their electronic health records. Dewey et al. found that ∼3.5% of individuals in their cohort had clinically actionable genetic variants. Many of these variants affected blood lipid levels that could influence cardiovascular health. Abul-Husn et al. extended these findings to investigate the genetics and treatment of familial hypercholesterolemia, a risk factor for cardiovascular disease, within their patient pool. Genetic screening helped identify at-risk patients who could benefit from increased treatment. Science, this issue p. 10.1126/science.aaf6814, p. 10.1126/science.aaf7000 Genomic screening can prompt the diagnosis of familial hypercholesterolemia patients, the majority of whom are receiving inadequate lipid-lowering therapy. INTRODUCTION Familial hypercholesterolemia (FH) is a public health genomics priority but remains underdiagnosed and undertreated despite widespread cholesterol screening. This represents a missed opportunity to prevent FH-associated cardiovascular morbidity and mortality. Pathogenic variants in three genes (LDLR, APOB, and PCSK9) account for the majority of FH cases. We assessed the prevalence and clinical impact of FH-associated genomic variants in 50,726 individuals from the MyCode Community Health Initiative at Geisinger Health System who underwent exome sequencing as part of the DiscovEHR human genetics collaboration with the Regeneron Genetics Center. RATIONALE Genetic testing for FH is uncommon in clinical practice in the United States, and the prevalence of FH variants in U.S. populations has not been well established. We sought to evaluate FH prevalence in a large integrated U.S. health care system using genomic sequencing and electronic health record (EHR) data. We determined the impact of FH variants on low-density lipoprotein cholesterol (LDL-C) levels and coronary artery disease (CAD) risk. We assessed the likelihood of FH variant carriers achieving a presequencing EHR-based FH diagnosis according to established clinical diagnostic criteria. Finally, we examined the rates of statin medication use and outcomes in FH variant carriers. RESULTS Thirty-five known and predicted pathogenic variants in LDLR, APOB, and PCSK9 were identified in 229 individuals. The estimated FH prevalence was 1:256 in unselected participants and 1:118 in participants ascertained via the cardiac catheterization laboratory. FH variants were found in only 2.5% of individuals with severe hypercholesterolemia (maximum EHR-documented LDL-C ≥ 190 mg/dl) in the cohort, and a maximum LDL-C of ≥190 mg/dl was absent in 45% of FH variant carriers. Overall, FH variant carriers had 69 ± 3 mg/dl greater maximum LDL-C than sequenced noncarriers (P = 1.8 × 10−20) and had significantly increased odds of general and premature CAD [odds ratio (OR), 2.6 (P = 4.3 × 10−11) and 3.7 (P = 5.5 × 10−14), respectively]. The increased odds of general and premature CAD were most pronounced in carriers of LDLR predicted loss-of-function variants [OR, 5.5 (P = 7.7 × 10−13) and 10.3 (P = 9.8 × 10−19), respectively]. Fourteen FH variant carriers were deceased; chart review revealed that none of these individuals had a clinical diagnosis of FH. Before genetic testing, only 15% of FH variant carriers had an ICD-10 (International Classification of Diseases, 10th revision) diagnosis code for pure hypercholesterolemia or had been seen in a lipid clinic, suggesting that few had been previously diagnosed with FH. Retrospectively applying Dutch Lipid Clinic Network diagnostic criteria to EHR data, we found presequencing criteria supporting a probable or definite clinical diagnosis of FH in 24% of FH variant carriers, highlighting the limitations of using existing clinical criteria for EHR-based screening in the absence of genetic testing. Active statin use was identified in 58% and high-intensity statin use in 37% of FH variant carriers. Only 46% of carriers currently on statin therapy had a most recent LDL-C level below 100 mg/dl compared to 77% of noncarriers. CONCLUSION In summary, we show that large-scale genomic screening in patients with longitudinal EHR data has the ability to detect FH, uncover and characterize novel pathogenic variants, determine disease prevalence, and enhance overall knowledge of clinical impact and outcomes. The 1:256 prevalence of FH variants in this predominantly European-American cohort is in line with prevalence estimates from recent work in European cohorts. Our findings highlight the undertreatment of FH variant carriers and demonstrate a potential clinical benefit for large-scale sequencing initiatives in service of precision medicine. Prevalence and clinical impact of FH variants in a large U.S. clinical care cohort. (A) Distribution of 229 heterozygous carriers of an FH variant in the DiscovEHR cohort by FH gene. (B) Prevalence of an FH variant in the DiscovEHR cohort and according to recruitment site


Nature Communications | 2016

Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis

Natalia Gomez-Ospina; Carol J. Potter; Rui Xiao; Kandamurugu Manickam; Mi Sun Kim; Kang Ho Kim; Benjamin L. Shneider; Jennifer Picarsic; Theodora A. Jacobson; Jing Zhang; Weimin He; Pengfei Liu; A.S. Knisely; Milton J. Finegold; Donna M. Muzny; Eric Boerwinkle; James R. Lupski; Sharon E. Plon; Richard A. Gibbs; Christine M. Eng; Yaping Yang; Gabriel Washington; Matthew H. Porteus; William E. Berquist; Neeraja Kambham; Ravinder J. Singh; Fan Xia; Gregory M. Enns; David D. Moore

Neonatal cholestasis is a potentially life-threatening condition requiring prompt diagnosis. Mutations in several different genes can cause progressive familial intrahepatic cholestasis, but known genes cannot account for all familial cases. Here we report four individuals from two unrelated families with neonatal cholestasis and mutations in NR1H4, which encodes the farnesoid X receptor (FXR), a bile acid-activated nuclear hormone receptor that regulates bile acid metabolism. Clinical features of severe, persistent NR1H4-related cholestasis include neonatal onset with rapid progression to end-stage liver disease, vitamin K-independent coagulopathy, low-to-normal serum gamma-glutamyl transferase activity, elevated serum alpha-fetoprotein and undetectable liver bile salt export pump (ABCB11) expression. Our findings demonstrate a pivotal function for FXR in bile acid homeostasis and liver protection.


Genetics in Medicine | 2010

Validation of My Family Health Portrait for six common heritable conditions.

Flavia M. Facio; W. Gregory Feero; Amy Linn; Neal Oden; Kandamurugu Manickam; Leslie G. Biesecker

Purpose: To assess the ability of My Family Health Portrait to accurately collect family history for six common heritable disorders.Background: Family history is useful to assess disease risk but is not widely used. We compared the pedigree from My Family Health Portrait, an online tool for collection of family history, to a pedigree supplemented by a genetics professional.Methods: One hundred fifty volunteers collected their family histories using My Family Health Portrait. A genetic counselor interviewed the volunteers to validate the entries and add diagnoses, as needed. The content and the affection assignments of the pedigrees were compared. The pedigrees were entered into Family HealthwareTM to assess risks for the diseases.Results: The sensitivity of My Family Health Portrait varied among the six diseases (67–100%) compared to the supplemented pedigree. The specificities ranged from 92 to 100%. When the pedigrees were used to generate risk scores, My Family Health Portrait yielded identical risks to the supplemented pedigree for 94–99% of the volunteers for diabetes and colon, breast, and ovarian cancer. The agreement was lower for coronary artery disease (68%) and stroke (83%).Conclusions: These data support the validity of My Family Health Portrait pedigrees for four common conditions—diabetes and colon, breast, and ovarian cancer. The tool performed less well for coronary artery disease and stroke. We recommend that the tool be improved to better capture information for these two common conditions.


Brain | 2016

EPG5-related Vici syndrome: a paradigm of neurodevelopmental disorders with defective autophagy

Susan Byrne; Lara Jansen; Jean Marie U-King-im; Ata Siddiqui; Hart G.W. Lidov; Istvan Bodi; Luke Smith; Rachael Mein; Thomas Cullup; Carlo Dionisi-Vici; Lihadh Al-Gazali; Mohammed Al-Owain; Zandre Bruwer; Khalid Al Thihli; Rana El-Garhy; Kevin M. Flanigan; Kandamurugu Manickam; Erik Zmuda; Wesley Banks; Ruth Gershoni-Baruch; Hanna Mandel; Efrat Dagan; Annick Raas-Rothschild; Hila Barash; Francis M. Filloux; Donnell J. Creel; Michael Harris; Ada Hamosh; Stefan Kölker; Darius Ebrahimi-Fakhari

Vici syndrome is a progressive neurodevelopmental multisystem disorder caused by mutations in the autophagy gene EPG5. Byrne et al. characterise the phenotype of 50 affected children, revealing callosal agenesis, cataracts, hypopigmentation, cardiomyopathy, immune dysfunction, developmental delay and microcephaly. Downregulation of epg5 in Drosophila results in autophagic abnormalities and progressive neurodegeneration.


European Journal of Human Genetics | 2014

Reciprocal deletion and duplication at 2q23.1 indicates a role for MBD5 in autism spectrum disorder

Sureni V Mullegama; Jill A. Rosenfeld; Carmen Orellana; Bregje W.M. van Bon; Sara Halbach; Elena A. Repnikova; Lauren Brick; Chumei Li; Lucie Dupuis; Mónica Roselló; Swaroop Aradhya; D. James Stavropoulos; Kandamurugu Manickam; Elyse Mitchell; Jennelle C. Hodge; Michael E. Talkowski; James F. Gusella; Kory Keller; Jonathan Zonana; Stuart Schwartz; Robert E. Pyatt; Darrel Waggoner; Lisa G. Shaffer; Angela E. Lin; Bert B.A. de Vries; Roberto Mendoza-Londono; Sarah H. Elsea

Copy number variations associated with abnormal gene dosage have an important role in the genetic etiology of many neurodevelopmental disorders, including intellectual disability (ID) and autism. We hypothesize that the chromosome 2q23.1 region encompassing MBD5 is a dosage-dependent region, wherein deletion or duplication results in altered gene dosage. We previously established the 2q23.1 microdeletion syndrome and report herein 23 individuals with 2q23.1 duplications, thus establishing a complementary duplication syndrome. The observed phenotype includes ID, language impairments, infantile hypotonia and gross motor delay, behavioral problems, autistic features, dysmorphic facial features (pinnae anomalies, arched eyebrows, prominent nose, small chin, thin upper lip), and minor digital anomalies (fifth finger clinodactyly and large broad first toe). The microduplication size varies among all cases and ranges from 68 kb to 53.7 Mb, encompassing a region that includes MBD5, an important factor in methylation patterning and epigenetic regulation. We previously reported that haploinsufficiency of MBD5 is the primary causal factor in 2q23.1 microdeletion syndrome and that mutations in MBD5 are associated with autism. In this study, we demonstrate that MBD5 is the only gene in common among all duplication cases and that overexpression of MBD5 is likely responsible for the core clinical features present in 2q23.1 microduplication syndrome. Phenotypic analyses suggest that 2q23.1 duplication results in a slightly less severe phenotype than the reciprocal deletion. The features associated with a deletion, mutation or duplication of MBD5 and the gene expression changes observed support MBD5 as a dosage-sensitive gene critical for normal development.


Journal of Genetic Counseling | 2012

Direct-to-Consumer Personal Genomic Testing: A Case Study and Practical Recommendations for “Genomic Counseling”

Amy C. Sturm; Kandamurugu Manickam

Technological advances and information-seeking consumers have pushed forward the movement of direct-to-consumer (DTC) genetic testing. Just like with other types of testing, there are potential risks, benefits and limitations. A major limitation of DTC testing is the incomplete view it provides regarding lifetime risk for common, complex diseases, since most tests only analyze 1–2 single nucleotide polymorphisms (SNPs) and do not include evaluation of medical or family histories, which is necessary to risk assessment. Further, it is not currently well-established whether personal genomic testing results will lead toward improved health behaviors, adverse psychological effects or potential overuse of the health care system. To display these and other issues, we present an in-depth case study of an individual who ordered DTC genetic testing and subsequently sought genetic counseling. This case presents a unique learning experience for the field of genomic counseling, as the patient did not fit the typical assumptions regarding ‘early adopters’ of DTC testing. It also allowed the genetics health care providers involved in the case to identify gaps in current genetic counseling practice that need to be filled and approaches to employ for successful delivery of genomic counseling. Based on our experience, we developed practical recommendations for genomic counseling, which include novel approaches to case preparation, use of electronic tools during the counseling session, and focusing on education as the major component of the genomic counseling session, in order to provide patients with the knowledge necessary to independently interpret and understand large amounts of genomic testing information provided to them.


Journal of Personalized Medicine | 2014

Design and Implementation of a Randomized Controlled Trial of Genomic Counseling for Patients with Chronic Disease

Kevin Sweet; Erynn S. Gordon; Amy C. Sturm; Tara J. Schmidlen; Kandamurugu Manickam; Amanda Ewart Toland; Margaret A. Keller; Catharine B Stack; J. Felipe García-España; Mark Bellafante; Neeraj Tayal; Peter J. Embi; Philip F. Binkley; Ray E. Hershberger; Wolfgang Sadee; Michael F. Christman; Clay B. Marsh

We describe the development and implementation of a randomized controlled trial to investigate the impact of genomic counseling on a cohort of patients with heart failure (HF) or hypertension (HTN), managed at a large academic medical center, the Ohio State University Wexner Medical Center (OSUWMC). Our study is built upon the existing Coriell Personalized Medicine Collaborative (CPMC®). OSUWMC patient participants with chronic disease (CD) receive eight actionable complex disease and one pharmacogenomic test report through the CPMC® web portal. Participants are randomized to either the in-person post-test genomic counseling—active arm, versus web-based only return of results—control arm. Study-specific surveys measure: (1) change in risk perception; (2) knowledge retention; (3) perceived personal control; (4) health behavior change; and, for the active arm (5), overall satisfaction with genomic counseling. This ongoing partnership has spurred creation of both infrastructure and procedures necessary for the implementation of genomics and genomic counseling in clinical care and clinical research. This included creation of a comprehensive informed consent document and processes for prospective return of actionable results for multiple complex diseases and pharmacogenomics (PGx) through a web portal, and integration of genomic data files and clinical decision support into an EPIC-based electronic medical record. We present this partnership, the infrastructure, genomic counseling approach, and the challenges that arose in the design and conduct of this ongoing trial to inform subsequent collaborative efforts and best genomic counseling practices.


American Journal of Medical Genetics Part A | 2010

Unexpected detection of dystrophin gene deletions by array comparative genomic hybridization

Catherine E. Cottrell; Thomas W. Prior; Robert E. Pyatt; Caroline Astbury; Shalini C. Reshmi; Dennis Bartholomew; Joan F. Atkin; Kandamurugu Manickam; Devon Lamb Thrush; Matthew Pastore; Chang-Yong Tsao; Roula al-Dahhak; Amy Newmeyer; Julie M. Gastier-Foster

Array comparative genomic hybridization has increasingly become the standard of care to evaluate patients for genomic imbalance. As the patient population evaluated by microarray expands, there is certain to be an increase in the detection of unexpected, yet common diseases. When array results predict a late‐onset disorder or cancer predisposition, it becomes a challenge for physicians and counselors to adequately address with patients. Included in this study were three patients described with nonspecific phenotypic findings who underwent microarray testing to better define their disease etiology. An unexpected deletion within the dystrophin gene was observed in each case, despite that no patient was suspected of a dystrophinopathy at the time of testing. The patients included an 8‐day‐old male with a dystrophin deletion predictive of Becker muscular dystrophy, an 18‐month old female found to be the carrier of deletion, and a 4‐year‐8‐month‐old male with a deletion predictive of Duchenne muscular dystrophy. In this circumstance it becomes difficult to counsel the family, as well as to predict disease course when underlying medical conditions may exist. However, early detection may enable the patient to receive proactive treatment, and allows for screening of at‐risk family members. Ultimately, it is up to the clinician to promote informed decision‐making within the family prior to testing, and ensure that adequate counseling is provided during follow‐up.


Pharmacogenomics | 2013

Implementation of a clinical research pharmacogenomics program at an academic medical center: role of the genetics healthcare professional

Amy C. Sturm; Kevin Sweet; Kandamurugu Manickam

Pharmacogenomic testing has been cited as one of the most tangible, clinically applicable advances currently available for personalized medicine; however, widespread utilization within the healthcare system remains limited [1]. Herein, we present our initial experiences providing pharmacogenomic testing and genomic counseling in the setting of a clinical research study within an academic medical center and offer suggestions for implementation using a team-based approach.

Collaboration


Dive into the Kandamurugu Manickam's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David J. Carey

Geisinger Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge