Kandaswamy Kalaivani
Manonmaniam Sundaranar University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Kandaswamy Kalaivani.
Ecotoxicology and Environmental Safety | 2009
Sengottayan Senthil-Nathan; Man-Young Choi; Chae-Hoon Paik; Hong-Yul Seo; Kandaswamy Kalaivani
The effects of two different neem products (Parker Oil and Neema) on mortality, food consumption and survival of the brown planthopper, Nilaparvata lugens Stål (BPH) (Homoptera: Delphacidae) were investigated. The LC(50) (3.45 ml/L for nymph and 4.42 ml/L for adult in Parker Oil treatment; 4.18 ml/L for nymph and 5.63 ml/L for adult in Neema treatment) and LC(90) (8.72 ml/L for nymph and 11.1 ml/L for adult in Parker Oil treatment; 9.84 ml/L for nymph and 13.07 ml/L for adult in Neema treatment) were identified by probit analysis. The LC(90) (equal to recommended dose) was applied in the rice field. The effective concentration of both Parker Oil and Neema took more than 48 h to kill 80% of the N. lugens. Fourth instar nymph and adult female N. lugens were caged on rice plants and exposed to a series (both LC(50) and LC(90)) of neem concentrations. Nymph and adult female N. lugens that were chronically exposed to neem pesticides showed immediate mortality after application in laboratory experiment. The quantity of food ingested and assimilated by N. lugens on neem-treated rice plants was significantly less than on control rice plants. The results clearly indicate the neem-based pesticide (Parker Oil and Neema), containing low lethal concentration, can be used effectively to inhibit the growth and survival of N. lugens.
Ecotoxicology and Environmental Safety | 2016
Athirstam Ponsankar; Prabhakaran Vasantha-Srinivasan; Sengottayan Senthil-Nathan; Annamalai Thanigaivel; Edward-Sam Edwin; Selvaraj Selin-Rani; Kandaswamy Kalaivani; Wayne B. Hunter; Rocco T. Alessandro; Ahmed Abdel-Megeed; Chae-Hoon Paik; Veeramuthu Duraipandiyan; Naif Abdullah Al-Dhabi
Botanical insecticides may provide alternatives to synthetic insecticides for controlling Spodoptera litura (F.) and they are target specific, biodegradable, and harmless to mammals. Eight natural chemical compounds with larvicidal activity were identified from fraction F6 of C. guianensis flower extract. Probit analysis of 95% confidence level exposed an LC50 of 223ppm against S. litura third instar larvae. The growth and development of S. litura was affected in sub-lethal concentrations of fraction F6 (50, 100, 150 and 200ppm) compared to controls. Similarly nutritional indices values decreased significantly compared to controls. Fraction F6 also damaged the gut epithelial layer and brush border membrane (BBM). This study also resolved the effects of toxicity to non-target earthworm treated with fraction F6 and chemical pesticides (monotrophos and cypermethrin) and the results showed that fraction F6 had no harmful effect on E. fetida. Further, fraction F6 was eluted and sub fractions F6c (50ppm) showed high mortality against S. litura third instar larvae. Octacosane from fraction F6c was established and confirmed using IR spectrum and HPLC. The time of retention of fraction F6c was confirmed with the octacosane standard. Fraction F6 of C. guianensis extract caused dose-dependent mortality towards S. litura. Octacosane in fraction F6c was establish to be the prominent chemical compound associated with causing mortality but other compounds present in the fraction F6 were shown to be associated with changes in development of S. litura at low dosages. S. litura at low dosage. Therefore, these findings suggest that octacosane may be one of the major insecticidal compounds affecting S. litura survival.
Acta Tropica | 2016
Edward-Sam Edwin; Prabhakaran Vasantha-Srinivasan; Sengottayan Senthil-Nathan; Annamalai Thanigaivel; Athirstam Ponsankar; Venkatraman Pradeepa; Selvaraj Selin-Rani; Kandaswamy Kalaivani; Wayne B. Hunter; Ahmed Abdel-Megeed; Veeramuthu Duraipandiyan; Naif Abdullah Al-Dhabi
The current study investigated the toxic effect of the leaf extract compound andrographolide from Andrographis paniculata (Burm.f) against the dengue vector Ae. aegypti. GC-MS analysis revealed that andrographolide was recognized as the major chemical constituent with the prominent peak area compared with other compounds. All isolated toxic compounds were purified and confirmed through RP-HPLC against chemical standards. The larvicidal assays established at 25ppm of bioactive compound against the treated instars of Ae. Aegypti showed prominent mortality compared to other treated concentrations. The percent mortality of larvae was directly proportional to concentration. The lethal concentration (LC50) was observed at 12ppm treatment concentration. The bioactive andrographolide considerably reduced the detoxifying enzyme regulations of α- and β- carboxylesterases. In contrast, the levels of GST and CYP450 significantly increase in a dose dependent manner. The andrographolide also showed strong oviposition deterrence effects at the sub-lethal dose of 12ppm. Similarly, the mean number of eggs were also significantly reduced in a dose dependent manner. At the concentration of 12ppm the effective percentage of repellency was greater than 90% with a protection time of 15-210min, compared with control. The histopathology study displayed that larvae treated with bioactive andrographolide had cytopathic effects in the midgut epithelium compared with the control. The present study established that bioactive andrographolide served as a potential useful for dengue vector management.
Scientific Reports | 2016
Kandaswamy Kalaivani; Marimuthu Maruthi Kalaiselvi; Sengottayan Senthil-Nathan
Methyl salicylate (MeSA) is a volatile organic compound synthesized from salicylic acid (SA) a plant hormone that helps to fight against plant disease. Seed treatment with MeSA, is an encouraging method to the seed industry to produce more growth and yield. The aim of our study is to find out the growth, development and disease tolerance of rice seed treated with different concentrations of MeSA. Also the seed treatments were studied to determine whether they directly influenced seedling emergence and growth in rice (Oryza sativa L) cultivars ‘IR 20, IR 50, IR 64, ASD 16, ASD 19 and ADT 46’ under greenhouse condition. MeSA seed treatments at 25, 50, 75 and 100 mg/L significantly increased seedling emergence. Effects were stronger in IR 50, and IR 64 and the effects were dose dependent, although the relationship between dose and effect was not always linear. MeSA seed treated rice plant against bacterial blight were analyzed. Bacterial blight was more effectively controlled by the seed treated with 100 mg/L than others. These results suggest that seed treatment with MeSA alters plant physiology in ways that may be useful for crop production as well as protection.
Pesticide Biochemistry and Physiology | 2016
Venkatraman Pradeepa; Sengottayan Senthil-Nathan; Subbiah Sathish-Narayanan; Selvaraj Selin-Rani; Prabhakaran Vasantha-Srinivasan; Annamalai Thanigaivel; Athirstam Ponsankar; Edward-Sam Edwin; Muthiah Sakthi-Bagavathy; Kandaswamy Kalaivani; Kadarkarai Murugan; Veeramuthu Duraipandiyan; Naif Abdullah Al-Dhabi
Plumbagin was isolated and characterized from the roots of Plumbago zeylanica using chromatography: TLC, Column chromatogram, HPLC, FTIR and 1H NMR. The isolated pure compounds were assayed for potency as inhibitors of: acetylcholine esterase (AchE), glutathione S-transferases (GST), superoxide dismutase (SOD), cytochrome P450 and α, β-esterase, and for repellency with Anopheles stephensi at four different concentrations (25, 50, 75 and 100ppm). The enzyme assay against the pure compound reveals that the level of esterase and SOD was decreased significantly in contrast the level of GST and cytochrome P450 was increased significantly. Our results suggests that novel Plumbagin has significantly alters the level of enzyme comparable to the control. Evaluations resulted in Plumbagin producing maximum repellency scores against An. stephensi mosquitoes in dose dependent manner with highest repellence was observed in the 100ppm. Histological examination showed that the midgut, hindgut and muscles are the most affected tissues. These tissues affected with major changes including separation and collapse of epithelial layer and cellular vacuolization. The results support the utility of plant compound Plumbagin for vector control as an alternative to synthetic insecticides, however, more vigorous field trials are needed to determine viability under natural conditions.
Ecotoxicology and Environmental Safety | 2017
Annamalai Thanigaivel; Prabhakaran Vasantha-Srinivasan; Sengottayan Senthil-Nathan; Edward-Sam Edwin; Athirstam Ponsankar; Muthiah Chellappandian; Selvaraj Selin-Rani; Jalasteen Lija-Escaline; Kandaswamy Kalaivani
Aedes aegypti Linn is one of the most important mosquito species. The vectors are responsible for causing deadly diseases like dengue and dengue hemorrhagic fever. Several chemical pesticides used to control these dengue vectors caused severe toxic significances on human health and other non-target beneficial insects. Therefore the current investigation has been made to access the bio-efficacy of the crude seed extracts of T. chebula against the dengue vector Ae. aegypti. The GC-MS analysis of crude seed extracts of T. chebula identified nine chemical compounds with major peak area in the 1,2,3-Benzenetriol (61.96%), followed by Tridecanoic acid (09.55%). Ae. aegypti larvae showed dose dependent mortality rate was observed between the treatments. Prominent protection rate at greater concentrations of 100ppm and moderate protection at 75 and 50ppm was observed in the repellent assay. Lethal concentration (LC50 and LC90) of fourth instar larvae of Ae. aegypti was observed in 138 and 220ppm concentration respectively. Similarly, the seed extracts showed 100% adulticidal activity at the concentration of 400ppm at 30min of exposure time. Phytochemicals present in the seed extracts of T. chebula significantly affects the major portions of the midgut tissues of Ae. aegypti at the concentration of 100ppm. The toxicological evaluation of seed extracts also proved non-toxic towards the A. bouvieri and Tx. splendens aquatic predatory insects. Hence, the present result suggest that bio-rational plant derived T. chebula could be incorporated in the dengue vector control and have no adverse effects on non-target beneficial insects.
Ecotoxicology and Environmental Safety | 2017
Prabhakaran Vasantha-Srinivasan; Sengottayan Senthil-Nathan; Athirstam Ponsankar; Annamalai Thanigaivel; Edward-Sam Edwin; Selvaraj Selin-Rani; Muthiah Chellappandian; Venkatraman Pradeepa; Jalasteen Lija-Escaline; Kandaswamy Kalaivani; Wayne B. Hunter; Veeramuthu Duraipandiyan; Naif Abdullah Al-Dhabi
Resistance to treatments with Temephos or plant derived oil, Pb-CVO, between a field collected Wild Strain (WS) and a susceptible Laboratory Strain (LS) of Ae. aegypti were measured. The Temephos (0.1mg/L) showed the greatest percentage of mosquito mortality compared to Pb-CVO (1.5mg/L) in LS Ae. aegypti. However, WS Ae. aegypti was not significantly affected by Temephos (0.1mg/L) treatment compare to the Pb-CVO (1.5mg/L). However, both strains (LS and WS) when treated with Pb-CVO (1.5mg/L) displayed steady larval mortality rate across all instars. The LC50 of Temephos was 0.027mg in LS, but increased in WS to 0.081mg/L. The LC50 of Pb-CVO treatment was observed at concentrations of 0.72 and 0.64mg/L for LS and WS strains respectively. The enzyme level of α- and β-carboxylesterase was reduced significantly in both mosquito strains treated with Pb-CVO. Whereas, there was a prominent deviation in the enzyme ratio observed between LS and WS treated with Temephos. The GST and CYP450 levels were upregulated in the LS, but decreased in WS, after treatment with Temephos. However, treatment with Pb-CVO caused both enzyme levels to increase significantly in both the strains. Visual observations of the midgut revealed cytotoxicity from sub-lethal concentrations of Temephos (0.04mg/L) and Pb-CVO (1.0mg/L) in both strains of Ae. aegypti compared to the control. The damage caused by Temephos was slightly less in WS compared to LS mosquito strains.
Parasitology Research | 2012
Kandaswamy Kalaivani; Sengottayan Senthil-Nathan; Arunachalam Ganesan Murugesan
Pesticide Biochemistry and Physiology | 2009
Sengottayan Senthil-Nathan; Kandaswamy Kalaivani; Man-Young Choi; Chae-Hoon Paik
Chemosphere | 2016
Prabhakaran Vasantha-Srinivasan; Sengottayan Senthil-Nathan; Annamalai Thanigaivel; Edward-Sam Edwin; Athirstam Ponsankar; Selvaraj Selin-Rani; Venkatraman Pradeepa; Muthiah Sakthi-Bhagavathy; Kandaswamy Kalaivani; Wayne B. Hunter; Veeramuthu Duraipandiyan; Naif Abdullah Al-Dhabi