Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kanehiro Fujiyoshi is active.

Publication


Featured researches published by Kanehiro Fujiyoshi.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury

Osahiko Tsuji; Kyoko Miura; Yohei Okada; Kanehiro Fujiyoshi; Masahiko Mukaino; Narihito Nagoshi; Kazuya Kitamura; Gentaro Kumagai; Makoto Nishino; Shuta Tomisato; Hisanobu Higashi; Toshihiro Nagai; Hiroyuki Katoh; Kazuhisa Kohda; Yumi Matsuzaki; Michisuke Yuzaki; Eiji Ikeda; Yoshiaki Toyama; Masaya Nakamura; Shinya Yamanaka; Hideyuki Okano

Various types of induced pluripotent stem (iPS) cells have been established by different methods, and each type exhibits different biological properties. Before iPS cell-based clinical applications can be initiated, detailed evaluations of the cells, including their differentiation potentials and tumorigenic activities in different contexts, should be investigated to establish their safety and effectiveness for cell transplantation therapies. Here we show the directed neural differentiation of murine iPS cells and examine their therapeutic potential in a mouse spinal cord injury (SCI) model. “Safe” iPS-derived neurospheres, which had been pre-evaluated as nontumorigenic by their transplantation into nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mouse brain, produced electrophysiologically functional neurons, astrocytes, and oligodendrocytes in vitro. Furthermore, when the safe iPS-derived neurospheres were transplanted into the spinal cord 9 d after contusive injury, they differentiated into all three neural lineages without forming teratomas or other tumors. They also participated in remyelination and induced the axonal regrowth of host 5HT+ serotonergic fibers, promoting locomotor function recovery. However, the transplantation of iPS-derived neurospheres pre-evaluated as “unsafe” showed robust teratoma formation and sudden locomotor functional loss after functional recovery in the SCI model. These findings suggest that pre-evaluated safe iPS clone-derived neural stem/progenitor cells may be a promising cell source for transplantation therapy for SCI.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Grafted human-induced pluripotent stem-cell–derived neurospheres promote motor functional recovery after spinal cord injury in mice

Satoshi Nori; Yohei Okada; Akimasa Yasuda; Osahiko Tsuji; Yuichiro Takahashi; Yoshiomi Kobayashi; Kanehiro Fujiyoshi; Masato Koike; Yasuo Uchiyama; Eiji Ikeda; Yoshiaki Toyama; Shinya Yamanaka; Masaya Nakamura; Hideyuki Okano

Once their safety is confirmed, human-induced pluripotent stem cells (hiPSCs), which do not entail ethical concerns, may become a preferred cell source for regenerative medicine. Here, we investigated the therapeutic potential of transplanting hiPSC-derived neurospheres (hiPSC-NSs) into nonobese diabetic (NOD)-severe combined immunodeficient (SCID) mice to treat spinal cord injury (SCI). For this, we used a hiPSC clone (201B7), established by transducing four reprogramming factors (Oct3/4, Sox2, Klf4, and c-Myc) into adult human fibroblasts. Grafted hiPSC-NSs survived, migrated, and differentiated into the three major neural lineages (neurons, astrocytes, and oligodendrocytes) within the injured spinal cord. They showed both cell-autonomous and noncell-autonomous (trophic) effects, including synapse formation between hiPSC-NS–derived neurons and host mouse neurons, expression of neurotrophic factors, angiogenesis, axonal regrowth, and increased amounts of myelin in the injured area. These positive effects resulted in significantly better functional recovery compared with vehicle-treated control animals, and the recovery persisted through the end of the observation period, 112 d post-SCI. No tumor formation was observed in the hiPSC-NS–grafted mice. These findings suggest that hiPSCs give rise to neural stem/progenitor cells that support improved function post-SCI and are a promising cell source for its treatment.


NeuroImage | 2009

Visualization of peripheral nerve degeneration and regeneration: monitoring with diffusion tensor tractography.

Takehiko Takagi; Masaya Nakamura; Masayuki Yamada; Keigo Hikishima; Suketaka Momoshima; Kanehiro Fujiyoshi; Shinsuke Shibata; Hirotaka James Okano; Yoshiaki Toyama; Hideyuki Okano

We applied diffusion tensor tractography (DTT), a recently developed MRI technique that reveals the microstructures of tissues based on its ability to monitor the random movements of water molecules, to the visualization of peripheral nerves after injury. The rat sciatic nerve was subjected to contusive injury, and the data obtained from diffusion tensor imaging (DTI) were used to determine the tracks of nerve fibers (DTT). The DTT images obtained using the fractional anisotropy (FA) threshold value of 0.4 clearly revealed the recovery process of the contused nerves. Immediately after the injury, fiber tracking from the designated proximal site could not be continued beyond the lesion epicenter, but the intensity improved thereafter, returning to its pre-injury level by 3 weeks later. We compared the FA value, a parameter computed from the DTT data, with the results of histological and functional examinations of the injured nerves, during recovery. The FA values of the peripheral nerves were more strongly correlated with axon-related (axon density and diameter) than with myelin-related (myelin density and thickness) parameters, supporting the theories that axonal membranes play a major role in anisotropic water diffusion and that myelination can modulate the degree of anisotropy. Moreover, restoration of the FA value at the lesion epicenter was strongly correlated with parameters of motor and sensory functional recovery. These correlations of the FA values with both the histological and functional changes demonstrate the potential usefulness of DTT for evaluating clinical events associated with Wallerian degeneration and the regeneration of peripheral nerves.


PLOS ONE | 2012

Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity.

Yoshiomi Kobayashi; Yohei Okada; Go Itakura; Hiroki Iwai; Soraya Nishimura; Akimasa Yasuda; Satoshi Nori; Keigo Hikishima; Tsunehiko Konomi; Kanehiro Fujiyoshi; Osahiko Tsuji; Yoshiaki Toyama; Shinya Yamanaka; Masaya Nakamura; Hideyuki Okano

Murine and human iPSC-NS/PCs (induced pluripotent stem cell-derived neural stem/progenitor cells) promote functional recovery following transplantation into the injured spinal cord in rodents. However, for clinical applicability, it is critical to obtain proof of the concept regarding the efficacy of grafted human iPSC-NS/PCs (hiPSC-NS/PCs) for the repair of spinal cord injury (SCI) in a non-human primate model. This study used a pre-evaluated “safe” hiPSC-NS/PC clone and an adult common marmoset (Callithrix jacchus) model of contusive SCI. SCI was induced at the fifth cervical level (C5), followed by transplantation of hiPSC-NS/PCs at 9 days after injury. Behavioral analyses were performed from the time of the initial injury until 12 weeks after SCI. Grafted hiPSC-NS/PCs survived and differentiated into all three neural lineages. Furthermore, transplantation of hiPSC-NS/PCs enhanced axonal sparing/regrowth and angiogenesis, and prevented the demyelination after SCI compared with that in vehicle control animals. Notably, no tumor formation occurred for at least 12 weeks after transplantation. Quantitative RT-PCR showed that mRNA expression levels of human neurotrophic factors were significantly higher in cultured hiPSC-NS/PCs than in human dermal fibroblasts (hDFs). Finally, behavioral tests showed that hiPSC-NS/PCs promoted functional recovery after SCI in the common marmoset. Taken together, these results indicate that pre-evaluated safe hiPSC-NS/PCs are a potential source of cells for the treatment of SCI in the clinic.


Stem Cells | 2011

Significance of Remyelination by Neural Stem/Progenitor Cells Transplanted into the Injured Spinal Cord†‡§

Akimasa Yasuda; Osahiko Tsuji; Shinsuke Shibata; Satoshi Nori; Morito Takano; Yoshiomi Kobayashi; Yuichiro Takahashi; Kanehiro Fujiyoshi; Chikako Hara; Atsuhi Miyawaki; Hirotaka James Okano; Yoshiaki Toyama; Masaya Nakamura; Hideyuki Okano

Previous reports of functional recovery from spinal cord injury (SCI) in rodents and monkeys after the delayed transplantation of neural stem/progenitor cells (NS/PCs) have raised hopes that stem cell therapy could be used to treat SCI in humans. More research is needed, however, to understand the mechanism of functional recovery. Oligodendrocytes derived from grafted NS/PCs remyelinate spared axons in the injured spinal cord. Here, we studied the extent of this remyelinations contribution to functional recovery following contusive SCI in mice. To isolate the effect of remyelination from other possible regenerative benefits of the grafted cells, NS/PCs obtained from myelin‐deficient shiverer mutant mice (shi‐NS/PCs) were used in this work alongside wild‐type NS/PCs (wt‐NS/PCs). shi‐NS/PCs behaved like wt‐NS/PCs in vitro and in vivo, with the exception of their myelinating potential. shi‐NS/PC‐derived oligodendrocytes did not express myelin basic protein in vitro and formed much thinner myelin sheaths in vivo compared with wt‐NS/PC‐derived oligodendrocytes. The transplantation of shi‐NS/PCs promoted some locomotor and electrophysiological functional recovery but significantly less than that afforded by wt‐NS/PCs. These findings establish the biological importance of remyelination by graft‐derived cells for functional recovery after the transplantation of NS/PCs into the injured spinal cord. STEM CELLS 2011;29:1983–1994.


PLOS ONE | 2009

Roles of ES Cell-Derived Gliogenic Neural Stem/ Progenitor Cells in Functional Recovery after Spinal Cord Injury

Gentaro Kumagai; Yohei Okada; Junichi Yamane; Narihito Nagoshi; Kazuya Kitamura; Masahiko Mukaino; Osahiko Tsuji; Kanehiro Fujiyoshi; Hiroyuki Katoh; Seiji Okada; Shinsuke Shibata; Yumi Matsuzaki; Satoshi Toh; Yoshiaki Toyama; Masaya Nakamura; Hideyuki Okano

Transplantation of neural stem/progenitor cells (NS/PCs) following the sub-acute phase of spinal cord injury (SCI) has been shown to promote functional recovery in rodent models. However, the types of cells most effective for treating SCI have not been clarified. Taking advantage of our recently established neurosphere-based culture system of ES cell-derived NS/PCs, in which primary neurospheres (PNS) and passaged secondary neurospheres (SNS) exhibit neurogenic and gliogenic potentials, respectively, here we examined the distinct effects of transplanting neurogenic and gliogenic NS/PCs on the functional recovery of a mouse model of SCI. ES cell-derived PNS and SNS transplanted 9 days after contusive injury at the Th10 level exhibited neurogenic and gliogenic differentiation tendencies, respectively, similar to those seen in vitro. Interestingly, transplantation of the gliogenic SNS, but not the neurogenic PNS, promoted axonal growth, remyelination, and angiogenesis, and resulted in significant locomotor functional recovery after SCI. These findings suggest that gliogenic NS/PCs are effective for promoting the recovery from SCI, and provide essential insight into the mechanisms through which cellular transplantation leads to functional improvement after SCI.


The Journal of Neuroscience | 2007

In Vivo Tracing of Neural Tracts in the Intact and Injured Spinal Cord of Marmosets by Diffusion Tensor Tractography

Kanehiro Fujiyoshi; Masayuki Yamada; Masaya Nakamura; Junichi Yamane; Hiroyuki Katoh; Kazuya Kitamura; Kenji Kawai; Seiji Okada; Suketaka Momoshima; Yoshiaki Toyama; Hideyuki Okano

In spinal cord injury, axonal disruption results in motor and sensory function impairment. The evaluation of axonal fibers is essential to assess the severity of injury and efficacy of any treatment protocol, but conventional methods such as tracer injection in brain parenchyma are highly invasive and require histological evaluation, precluding clinical applications. Previous advances in magnetic resonance imaging technology have led to the development of diffusion tensor tractography (DTT) as a potential modality to perform in vivo tracing of axonal fibers. The properties and clinical applications of DTT in the brain have been reported, but technical difficulties have limited DTT studies of the spinal cord. In this study, we report the effective use of DTT to visualize both intact and surgically disrupted spinal long tracts in adult common marmosets. To verify the feasibility of spinal cord DTT, we first performed DTT of postmortem marmosets. DTT clearly illustrated spinal projections such as the corticospinal tract and afferent fibers in control animals, and depicted the severed long tracts in the injured animals. Histology of the spinal cords in both control and injured groups were consistent with DTT findings, verifying the accuracy of DTT. We also conducted DTT in live marmosets and demonstrated that DTT can be performed in live animals to reveal in vivo nerve fiber tracing images, providing an essential tool to evaluate axonal conditions in the injured spinal cord. Taken together, these findings demonstrate the feasibility of applying DTT to preclinical and clinical studies of spinal cord injury.


Molecular Brain | 2013

Time-dependent changes in the microenvironment of injured spinal cord affects the therapeutic potential of neural stem cell transplantation for spinal cord injury

Soraya Nishimura; Akimasa Yasuda; Hiroki Iwai; Morito Takano; Yoshiomi Kobayashi; Satoshi Nori; Osahiko Tsuji; Kanehiro Fujiyoshi; Hayao Ebise; Yoshiaki Toyama; Hideyuki Okano; Masaya Nakamura

BackgroundThe transplantation of neural stem/progenitor cells (NS/PCs) at the sub-acute phase of spinal cord injury, but not at the chronic phase, can promote functional recovery. However, the reasons for this difference and whether it involves the survival and/or fate of grafted cells under these two conditions remain unclear. To address this question, NS/PC transplantation was performed after contusive spinal cord injury in adult mice at the sub-acute and chronic phases.ResultsQuantitative analyses using bio-imaging, which can noninvasively detect surviving grafted cells in living animals, revealed no significant difference in the survival rate of grafted cells between the sub-acute and chronic transplantation groups. Additionally, immunohistology revealed no significant difference in the differentiation phenotypes of grafted cells between the two groups. Microarray analysis revealed no significant differences in the expression of genes encoding inflammatory cytokines or growth factors, which affect the survival and/or fate of grafted cells, in the injured spinal cord between the sub-acute and chronic phases. By contrast, the distribution of chronically grafted NS/PCs was restricted compared to NS/PCs grafted at the sub-acute phase because a more prominent glial scar located around the lesion epicenter enclosed the grafted cells. Furthermore, microarray and histological analysis revealed that the infiltration of macrophages, especially M2 macrophages, which have anti-inflammatory role, was significantly higher at the sub-acute phase than the chronic phase. Ultimately, NS/PCs that were transplanted in the sub-acute phase, but not the chronic phase, promoted functional recovery compared with the vehicle control group.ConclusionsThe extent of glial scar formation and the characteristics of inflammation is the most remarkable difference in the injured spinal cord microenvironment between the sub-acute and chronic phases. To achieve functional recovery by NS/PC transplantation in cases at the chronic phase, modification of the microenvironment of the injured spinal cord focusing on glial scar formation and inflammatory phenotype should be considered.


PLOS ONE | 2011

Human hepatocyte growth factor promotes functional recovery in primates after spinal cord injury

Kazuya Kitamura; Kanehiro Fujiyoshi; Jun ichi Yamane; Fumika Toyota; Keigo Hikishima; Tatsuji Nomura; Hiroshi Funakoshi; Toshikazu Nakamura; Masashi Aoki; Yoshiaki Toyama; Hideyuki Okano; Masaya Nakamura

Many therapeutic interventions for spinal cord injury (SCI) using neurotrophic factors have focused on reducing the area damaged by secondary, post-injury degeneration, to promote functional recovery. Hepatocyte growth factor (HGF), which is a potent mitogen for mature hepatocytes and a mediator of the inflammatory responses to tissue injury, was recently highlighted as a potent neurotrophic factor in the central nervous system. We previously reported that introducing exogenous HGF into the injured rodent spinal cord using a herpes simplex virus-1 vector significantly reduces the area of damaged tissue and promotes functional recovery. However, that study did not examine the therapeutic effects of administering HGF after injury, which is the most critical issue for clinical application. To translate this strategy to human treatment, we induced a contusive cervical SCI in the common marmoset, a primate, and then administered recombinant human HGF (rhHGF) intrathecally. Motor function was assessed using an original open field scoring system focusing on manual function, including reach-and-grasp performance and hand placement in walking. The intrathecal rhHGF preserved the corticospinal fibers and myelinated areas, thereby promoting functional recovery. In vivo magnetic resonance imaging showed significant preservation of the intact spinal cord parenchyma. rhHGF-treatment did not give rise to an abnormal outgrowth of calcitonin gene related peptide positive fibers compared to the control group, indicating that this treatment did not induce or exacerbate allodynia. This is the first study to report the efficacy of rhHGF for treating SCI in non-human primates. In addition, this is the first presentation of a novel scale for assessing neurological motor performance in non-human primates after contusive cervical SCI.


Neurotherapeutics | 2011

Cell Therapy for Spinal Cord Injury by Neural Stem/Progenitor Cells Derived from iPS/ES Cells

Osahiko Tsuji; Kyoko Miura; Kanehiro Fujiyoshi; Suketaka Momoshima; Masaya Nakamura; Hideyuki Okano

Reports of functional recovery from spinal cord injury after the transplantation of rat fetus-derived neural stem cells and embryonic stem cells has raised great expectations for the successful clinical use of stem cell transplantation therapy. However, the ethical issues involved in destroying human embryos or fertilized oocytes to obtain stem cells have been a major obstacle to developing clinically useful stem cell sources, and the transplantation of stem cells isolated from other human embryonic tissues has not yet been developed for use in clinical applications. Recently, induced pluripotent stem cells, which can serve as a source of cells for autologous transplantation, have been attracting a great deal of attention as a clinically viable alternative to stem cells obtained directly from tissues. In this review, we outline the neural induction of mouse embryonic stem cells and induced pluripotent stem cells, their therapeutic efficacy in spinal cord injury, and their safety in vivo.

Collaboration


Dive into the Kanehiro Fujiyoshi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Keigo Hikishima

Central Institute for Experimental Animals

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge