Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Osahiko Tsuji is active.

Publication


Featured researches published by Osahiko Tsuji.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury

Osahiko Tsuji; Kyoko Miura; Yohei Okada; Kanehiro Fujiyoshi; Masahiko Mukaino; Narihito Nagoshi; Kazuya Kitamura; Gentaro Kumagai; Makoto Nishino; Shuta Tomisato; Hisanobu Higashi; Toshihiro Nagai; Hiroyuki Katoh; Kazuhisa Kohda; Yumi Matsuzaki; Michisuke Yuzaki; Eiji Ikeda; Yoshiaki Toyama; Masaya Nakamura; Shinya Yamanaka; Hideyuki Okano

Various types of induced pluripotent stem (iPS) cells have been established by different methods, and each type exhibits different biological properties. Before iPS cell-based clinical applications can be initiated, detailed evaluations of the cells, including their differentiation potentials and tumorigenic activities in different contexts, should be investigated to establish their safety and effectiveness for cell transplantation therapies. Here we show the directed neural differentiation of murine iPS cells and examine their therapeutic potential in a mouse spinal cord injury (SCI) model. “Safe” iPS-derived neurospheres, which had been pre-evaluated as nontumorigenic by their transplantation into nonobese diabetic/severe combined immunodeficiency (NOD/SCID) mouse brain, produced electrophysiologically functional neurons, astrocytes, and oligodendrocytes in vitro. Furthermore, when the safe iPS-derived neurospheres were transplanted into the spinal cord 9 d after contusive injury, they differentiated into all three neural lineages without forming teratomas or other tumors. They also participated in remyelination and induced the axonal regrowth of host 5HT+ serotonergic fibers, promoting locomotor function recovery. However, the transplantation of iPS-derived neurospheres pre-evaluated as “unsafe” showed robust teratoma formation and sudden locomotor functional loss after functional recovery in the SCI model. These findings suggest that pre-evaluated safe iPS clone-derived neural stem/progenitor cells may be a promising cell source for transplantation therapy for SCI.


Proceedings of the National Academy of Sciences of the United States of America | 2011

Grafted human-induced pluripotent stem-cell–derived neurospheres promote motor functional recovery after spinal cord injury in mice

Satoshi Nori; Yohei Okada; Akimasa Yasuda; Osahiko Tsuji; Yuichiro Takahashi; Yoshiomi Kobayashi; Kanehiro Fujiyoshi; Masato Koike; Yasuo Uchiyama; Eiji Ikeda; Yoshiaki Toyama; Shinya Yamanaka; Masaya Nakamura; Hideyuki Okano

Once their safety is confirmed, human-induced pluripotent stem cells (hiPSCs), which do not entail ethical concerns, may become a preferred cell source for regenerative medicine. Here, we investigated the therapeutic potential of transplanting hiPSC-derived neurospheres (hiPSC-NSs) into nonobese diabetic (NOD)-severe combined immunodeficient (SCID) mice to treat spinal cord injury (SCI). For this, we used a hiPSC clone (201B7), established by transducing four reprogramming factors (Oct3/4, Sox2, Klf4, and c-Myc) into adult human fibroblasts. Grafted hiPSC-NSs survived, migrated, and differentiated into the three major neural lineages (neurons, astrocytes, and oligodendrocytes) within the injured spinal cord. They showed both cell-autonomous and noncell-autonomous (trophic) effects, including synapse formation between hiPSC-NS–derived neurons and host mouse neurons, expression of neurotrophic factors, angiogenesis, axonal regrowth, and increased amounts of myelin in the injured area. These positive effects resulted in significantly better functional recovery compared with vehicle-treated control animals, and the recovery persisted through the end of the observation period, 112 d post-SCI. No tumor formation was observed in the hiPSC-NS–grafted mice. These findings suggest that hiPSCs give rise to neural stem/progenitor cells that support improved function post-SCI and are a promising cell source for its treatment.


Circulation Research | 2013

Steps Toward Safe Cell Therapy Using Induced Pluripotent Stem Cells

Hideyuki Okano; Masaya Nakamura; Kenji Yoshida; Yohei Okada; Osahiko Tsuji; Satoshi Nori; Eiji Ikeda; Shinya Yamanaka; Kyoko Miura

The enthusiasm for producing patient-specific human embryonic stem cells using somatic nuclear transfer has somewhat abated in recent years because of ethical, technical, and political concerns. However, the interest in generating induced pluripotent stem cells (iPSCs), in which pluripotency can be obtained by transcription factor transduction of various somatic cells, has rapidly increased. Human iPSCs are anticipated to open enormous opportunities in the biomedical sciences in terms of cell therapies for regenerative medicine and stem cell modeling of human disease. On the other hand, recent reports have emphasized the pitfalls of iPSC technology, including the potential for genetic and epigenetic abnormalities, tumorigenicity, and immunogenicity of transplanted cells. These constitute serious safety-related concerns for iPSC-based cell therapy. However, preclinical data supporting the safety and efficacy of iPSCs are also accumulating. In this Review, recent achievements and future tasks for safe iPSC-based cell therapy are summarized, using regenerative medicine for repair strategies in the damaged central nervous system (CNS) as a model. Insights on safety and preclinical use of iPSCs in cardiovascular repair model are also discussed.


PLOS ONE | 2012

Pre-evaluated safe human iPSC-derived neural stem cells promote functional recovery after spinal cord injury in common marmoset without tumorigenicity.

Yoshiomi Kobayashi; Yohei Okada; Go Itakura; Hiroki Iwai; Soraya Nishimura; Akimasa Yasuda; Satoshi Nori; Keigo Hikishima; Tsunehiko Konomi; Kanehiro Fujiyoshi; Osahiko Tsuji; Yoshiaki Toyama; Shinya Yamanaka; Masaya Nakamura; Hideyuki Okano

Murine and human iPSC-NS/PCs (induced pluripotent stem cell-derived neural stem/progenitor cells) promote functional recovery following transplantation into the injured spinal cord in rodents. However, for clinical applicability, it is critical to obtain proof of the concept regarding the efficacy of grafted human iPSC-NS/PCs (hiPSC-NS/PCs) for the repair of spinal cord injury (SCI) in a non-human primate model. This study used a pre-evaluated “safe” hiPSC-NS/PC clone and an adult common marmoset (Callithrix jacchus) model of contusive SCI. SCI was induced at the fifth cervical level (C5), followed by transplantation of hiPSC-NS/PCs at 9 days after injury. Behavioral analyses were performed from the time of the initial injury until 12 weeks after SCI. Grafted hiPSC-NS/PCs survived and differentiated into all three neural lineages. Furthermore, transplantation of hiPSC-NS/PCs enhanced axonal sparing/regrowth and angiogenesis, and prevented the demyelination after SCI compared with that in vehicle control animals. Notably, no tumor formation occurred for at least 12 weeks after transplantation. Quantitative RT-PCR showed that mRNA expression levels of human neurotrophic factors were significantly higher in cultured hiPSC-NS/PCs than in human dermal fibroblasts (hDFs). Finally, behavioral tests showed that hiPSC-NS/PCs promoted functional recovery after SCI in the common marmoset. Taken together, these results indicate that pre-evaluated safe hiPSC-NS/PCs are a potential source of cells for the treatment of SCI in the clinic.


Stem Cells | 2011

Significance of Remyelination by Neural Stem/Progenitor Cells Transplanted into the Injured Spinal Cord†‡§

Akimasa Yasuda; Osahiko Tsuji; Shinsuke Shibata; Satoshi Nori; Morito Takano; Yoshiomi Kobayashi; Yuichiro Takahashi; Kanehiro Fujiyoshi; Chikako Hara; Atsuhi Miyawaki; Hirotaka James Okano; Yoshiaki Toyama; Masaya Nakamura; Hideyuki Okano

Previous reports of functional recovery from spinal cord injury (SCI) in rodents and monkeys after the delayed transplantation of neural stem/progenitor cells (NS/PCs) have raised hopes that stem cell therapy could be used to treat SCI in humans. More research is needed, however, to understand the mechanism of functional recovery. Oligodendrocytes derived from grafted NS/PCs remyelinate spared axons in the injured spinal cord. Here, we studied the extent of this remyelinations contribution to functional recovery following contusive SCI in mice. To isolate the effect of remyelination from other possible regenerative benefits of the grafted cells, NS/PCs obtained from myelin‐deficient shiverer mutant mice (shi‐NS/PCs) were used in this work alongside wild‐type NS/PCs (wt‐NS/PCs). shi‐NS/PCs behaved like wt‐NS/PCs in vitro and in vivo, with the exception of their myelinating potential. shi‐NS/PC‐derived oligodendrocytes did not express myelin basic protein in vitro and formed much thinner myelin sheaths in vivo compared with wt‐NS/PC‐derived oligodendrocytes. The transplantation of shi‐NS/PCs promoted some locomotor and electrophysiological functional recovery but significantly less than that afforded by wt‐NS/PCs. These findings establish the biological importance of remyelination by graft‐derived cells for functional recovery after the transplantation of NS/PCs into the injured spinal cord. STEM CELLS 2011;29:1983–1994.


PLOS ONE | 2009

Roles of ES Cell-Derived Gliogenic Neural Stem/ Progenitor Cells in Functional Recovery after Spinal Cord Injury

Gentaro Kumagai; Yohei Okada; Junichi Yamane; Narihito Nagoshi; Kazuya Kitamura; Masahiko Mukaino; Osahiko Tsuji; Kanehiro Fujiyoshi; Hiroyuki Katoh; Seiji Okada; Shinsuke Shibata; Yumi Matsuzaki; Satoshi Toh; Yoshiaki Toyama; Masaya Nakamura; Hideyuki Okano

Transplantation of neural stem/progenitor cells (NS/PCs) following the sub-acute phase of spinal cord injury (SCI) has been shown to promote functional recovery in rodent models. However, the types of cells most effective for treating SCI have not been clarified. Taking advantage of our recently established neurosphere-based culture system of ES cell-derived NS/PCs, in which primary neurospheres (PNS) and passaged secondary neurospheres (SNS) exhibit neurogenic and gliogenic potentials, respectively, here we examined the distinct effects of transplanting neurogenic and gliogenic NS/PCs on the functional recovery of a mouse model of SCI. ES cell-derived PNS and SNS transplanted 9 days after contusive injury at the Th10 level exhibited neurogenic and gliogenic differentiation tendencies, respectively, similar to those seen in vitro. Interestingly, transplantation of the gliogenic SNS, but not the neurogenic PNS, promoted axonal growth, remyelination, and angiogenesis, and resulted in significant locomotor functional recovery after SCI. These findings suggest that gliogenic NS/PCs are effective for promoting the recovery from SCI, and provide essential insight into the mechanisms through which cellular transplantation leads to functional improvement after SCI.


Journal of Neurochemistry | 2003

Involvement of c-Jun N-terminal kinase in amyloid precursor protein-mediated neuronal cell death

Yuichi Hashimoto; Osahiko Tsuji; Takako Niikura; Yohichi Yamagishi; Miho Ishizaka; Masaoki Kawasumi; Tomohiro Chiba; Kohsuke Kanekura; Marina Yamada; Emi Tsukamoto; Keisuke Kouyama; Kenzo Terashita; Sadakazu Aiso; Anning Lin; Ikuo Nishimoto

Amyloid precursor protein (APP), the precursor of Aβ, has been shown to function as a cell surface receptor that mediates neuronal cell death by anti‐APP antibody. The c‐Jun N‐terminal kinase (JNK) can mediate various neurotoxic signals, including Aβ neurotoxicity. However, the relationship of APP‐mediated neurotoxicity to JNK is not clear, partly because APP cytotoxicity is Aβ independent. Here we examined whether JNK is involved in APP‐mediated neuronal cell death and found that: (i) neuronal cell death by antibody‐bound APP was inhibited by dominant‐negative JNK, JIP‐1b and SP600125, the specific inhibitor of JNK, but not by SB203580 or PD98059; (ii) constitutively active (ca) JNK caused neuronal cell death and (iii) the pharmacological profile of caJNK‐mediated cell death closely coincided with that of APP‐mediated cell death. Pertussis toxin (PTX) suppressed APP‐mediated cell death but not caJNK‐induced cell death, which was suppressed by Humanin, a newly identified neuroprotective factor which inhibits APP‐mediated cytotoxicity. In the presence of PTX, the PTX‐resistant mutant of Gαo, but not that of Gαi, recovered the cytotoxic action of APP. These findings demonstrate that JNK is involved in APP‐mediated neuronal cell death as a downstream signal transducer of Go.


Experimental Neurology | 2010

Anti-IL-6-receptor antibody promotes repair of spinal cord injury by inducing microglia-dominant inflammation

Masahiko Mukaino; Masaya Nakamura; Osamu Yamada; Seiji Okada; Satoru Morikawa; Francois Renault-Mihara; Akio Iwanami; Takeshi Ikegami; Yoshiyuki Ohsugi; Osahiko Tsuji; Hiroyuki Katoh; Yumi Matsuzaki; Yoshiaki Toyama; Meigen Liu; Hideyuki Okano

We previously reported the beneficial effect of administering an anti-mouse IL-6 receptor antibody (MR16-1) immediately after spinal cord injury (SCI). The purpose of our present study was to clarify the mechanism underlying how MR16-1 improves motor function after SCI. Quantitative analyses of inflammatory cells using flow cytometry, and immunohistochemistry with bone marrow-chimeric mice generated by transplanting genetically marked purified hematopoietic stem cells, revealed that MR16-1 dramatically switched the central player in the post-traumatic inflammation, from hematogenous macrophages to resident microglia. This change was accompanied by alterations in the expression of relevant cytokines within the injured spinal cord; the expression of recruiting chemokines including CCL2, CCL5, and CXCL10 was decreased, while that of Granulocyte/Macrophage-Colony Stimulating Factor (GM-CSF), a known mitogen for microglia, was increased. We also showed that the resident microglia expressed higher levels of phagocytic markers than the hematogenous macrophages. Consistent with these findings, we observed significantly decreased tissue damage and reduced levels of myelin debris and Nogo-A, the axonal growth inhibitor, by MR16-1 treatment. Moreover, we observed increased axonal regeneration and/or sprouting in the MR16-1-treated mice. Our findings indicate that the functional improvement elicited by MR16-1 involves microglial functions, and provide new insights into the role of IL-6 signaling in the pathology of SCI.


Molecular Brain | 2013

Time-dependent changes in the microenvironment of injured spinal cord affects the therapeutic potential of neural stem cell transplantation for spinal cord injury

Soraya Nishimura; Akimasa Yasuda; Hiroki Iwai; Morito Takano; Yoshiomi Kobayashi; Satoshi Nori; Osahiko Tsuji; Kanehiro Fujiyoshi; Hayao Ebise; Yoshiaki Toyama; Hideyuki Okano; Masaya Nakamura

BackgroundThe transplantation of neural stem/progenitor cells (NS/PCs) at the sub-acute phase of spinal cord injury, but not at the chronic phase, can promote functional recovery. However, the reasons for this difference and whether it involves the survival and/or fate of grafted cells under these two conditions remain unclear. To address this question, NS/PC transplantation was performed after contusive spinal cord injury in adult mice at the sub-acute and chronic phases.ResultsQuantitative analyses using bio-imaging, which can noninvasively detect surviving grafted cells in living animals, revealed no significant difference in the survival rate of grafted cells between the sub-acute and chronic transplantation groups. Additionally, immunohistology revealed no significant difference in the differentiation phenotypes of grafted cells between the two groups. Microarray analysis revealed no significant differences in the expression of genes encoding inflammatory cytokines or growth factors, which affect the survival and/or fate of grafted cells, in the injured spinal cord between the sub-acute and chronic phases. By contrast, the distribution of chronically grafted NS/PCs was restricted compared to NS/PCs grafted at the sub-acute phase because a more prominent glial scar located around the lesion epicenter enclosed the grafted cells. Furthermore, microarray and histological analysis revealed that the infiltration of macrophages, especially M2 macrophages, which have anti-inflammatory role, was significantly higher at the sub-acute phase than the chronic phase. Ultimately, NS/PCs that were transplanted in the sub-acute phase, but not the chronic phase, promoted functional recovery compared with the vehicle control group.ConclusionsThe extent of glial scar formation and the characteristics of inflammation is the most remarkable difference in the injured spinal cord microenvironment between the sub-acute and chronic phases. To achieve functional recovery by NS/PC transplantation in cases at the chronic phase, modification of the microenvironment of the injured spinal cord focusing on glial scar formation and inflammatory phenotype should be considered.


Cell Transplantation | 2011

Comparative Study of Methods for Administering Neural Stem/Progenitor Cells to Treat Spinal Cord Injury in Mice:

Yuichiro Takahashi; Osahiko Tsuji; Gentaro Kumagai; Chikako Hara; Hirotaka James Okano; Atsushi Miyawaki; Yoshiaki Toyama; Hideyuki Okano; Masaya Nakamura

To investigate potential cures for spinal cord injury (SCI), several researchers have transplanted neural stem/progenitor cells (NS/PCs) into the injured spinal cord by different procedures, including intralesional (IL), intrathecal (IT), and intravenous (IV) injection. However, there are no reports quantifying or comparing the number of cells successfully transplanted to the lesion site by each procedure in vivo. The purpose of the present study was to determine the optimal method of cell transplantation to the SCI site in terms of grafted cell survival and safety. For this purpose, we developed mouse NS/PCs that expressed a novel Venus-luciferase fusion protein that enabled us to detect a minimum of 1,000 grafted cells in vivo by bioluminescence imaging (BLI). After inducing contusive SCI at the T10 level in mice, NS/PCs were transplanted into the injured animals three different ways: by IL, IT, or IV injection. Six weeks after the transplantation, BLI analysis showed that in the IL group, the luminescence intensity of the grafted cells had decreased to about 10% of its initial level, and appeared at the site of injury. In the IT group, the luminescence of the grafted cells, which was distributed throughout the entire subarachnoid space immediately after transplantation, was detected at the injured site 1 week later, and by 6 weeks had gradually decreased to about 0.3% of its initial level. In the IV group, no grafted cells were detected at the site of injury, but all of these mice showed luminescence in the bilateral chest, suggesting pulmonary embolism. In addition, one third of these mice died immediately after the IV injection. In terms of grafted cell survival and safety, we conclude that the IL application of NS/PCs is the most effective and feasible method for transplanting NS/PCs into the SCI site.

Collaboration


Dive into the Osahiko Tsuji's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nobuyuki Fujita

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge