Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kangdong Liu is active.

Publication


Featured researches published by Kangdong Liu.


Journal of Biological Chemistry | 2011

Phosphorylation of Caspase-7 by p21-activated Protein Kinase (PAK) 2 Inhibits Chemotherapeutic Drug-induced Apoptosis of Breast Cancer Cell Lines

Xiang Li; Weihong Wen; Kangdong Liu; Feng Zhu; Margarita Malakhova; Cong Peng; Tingting Li; Hong Gyum Kim; Wei Ya Ma; Yong Yeon Cho; Ann M. Bode; Ziming Dong; Zigang Dong

p21-activated kinase (PAK) 2, a member of the PAK family of serine/threonine protein kinases, plays an important role in physiological processes such as motility, survival, mitosis, and apoptosis. However, the role of PAK2 in resistance to chemotherapy is unclear. Here we report that PAK2 is highly expressed in human breast cancer cell lines and human breast invasive carcinoma tissue compared with a human non-tumorigenic mammary epithelial cell line and adjacent normal breast tissue, respectively. Interestingly, we found that PAK2 can bind with caspase-7 and phosphorylate caspase-7 at the Ser-30, Thr-173, and Ser-239 sites. Functionally, the phosphorylation of caspase-7 decreases its activity, thereby inhibiting cellular apoptosis. Our data indicate that highly expressed PAK2 mediates chemotherapeutic resistance in human breast invasive ductal carcinoma by negatively regulating caspase-7 activity.


Journal of Biological Chemistry | 2011

Eriodictyol inhibits RSK2-ATF1 signaling and suppresses EGF-induced neoplastic cell transformation

Kangdong Liu; Yong Yeon Cho; Ke Yao; Janos Nadas; Dong Joon Kim; Eun Jin Cho; Mee Hyun Lee; Angelo Pugliese; Jishuai Zhang; Ann M. Bode; Ziming Dong; Zigang Dong

RSK2 is a widely expressed serine/threonine kinase, and its activation enhances cell proliferation. Here, we report that ATF1 is a novel substrate of RSK2 and that RSK2-ATF1 signaling plays an important role in EGF-induced neoplastic cell transformation. RSK2 phosphorylated ATF1 at Ser-63 and enhanced ATF1 transcriptional activity. Docking experiments using the crystal structure of the RSK2 N-terminal kinase domain combined with in vitro pulldown assays demonstrated that eriodictyol, a flavanone found in fruits, bound with the N-terminal kinase domain of RSK2 to inhibit RSK2 N-terminal kinase activity. In cells, eriodictyol inhibited phosphorylation of ATF1 but had no effect on the phosphorylation of RSK, MEK1/2, ERK1/2, p38 or JNKs, indicating that eriodictyol specifically suppresses RSK2 signaling. Furthermore, eriodictyol inhibited RSK2-mediated ATF1 transactivation and tumor promoter-induced transformation of JB6 Cl41 cells. Eriodictyol or knockdown of RSK2 or ATF1 also suppressed Ras-mediated focus formation. Overall, these results indicate that RSK2-ATF1 signaling plays an important role in neoplastic cell transformation and that eriodictyol is a novel natural compound for suppressing RSK2 kinase activity.


Cancer Research | 2013

Sunlight UV-Induced Skin Cancer Relies upon Activation of the p38α Signaling Pathway

Kangdong Liu; Donghoon Yu; Yong Yeon Cho; Ann M. Bode; Wei Ya Ma; Ke Yao; Shengqing Li; Jixia Li; G. Tim Bowden; Zigang Dong; Ziming Dong

The activation of cellular signal transduction pathways by solar ultraviolet (SUV) irradiation plays a vital role in skin tumorigenesis. Although many pathways have been studied using pure ultraviolet A (UVA) or ultraviolet B (UVB) irradiation, the signaling pathways induced by SUV (i.e., sunlight) are not understood well enough to permit improvements for prevention, prognosis, and treatment. Here, we report parallel protein kinase array studies aimed at determining the dominant signaling pathway involved in SUV irradiation. Our results indicated that the p38-related signal transduction pathway was dramatically affected by SUV irradiation. SUV (60 kJ UVA/m(2)/3.6 kJ UVB/m(2)) irradiation stimulates phosphorylation of p38α (MAPK14) by 5.78-fold, MSK2 (RPS6KA4) by 6.38-fold, and HSP27 (HSPB1) by 34.56-fold compared with untreated controls. By investigating the tumorigenic role of SUV-induced signal transduction in wild-type and p38 dominant-negative (p38 DN) mice, we found that p38 blockade yielded fewer and smaller tumors. These results establish that p38 signaling is critical for SUV-induced skin carcinogenesis.


Journal of Clinical Investigation | 2009

CEACAM6 attenuates adenovirus infection by antagonizing viral trafficking in cancer cells

Yaohe Wang; Rathi Gangeswaran; Xingbo Zhao; Pengju Wang; James R. Tysome; Vipul Bhakta; Ming Yuan; C.P. Chikkanna-Gowda; Guozhong Jiang; Dongling Gao; Fengyu Cao; Jennelle Francis; Jinxia Yu; Kangdong Liu; Hongyan Yang; Yunhan Zhang; Weidong Zang; Claude Chelala; Ziming Dong; Nicholas R. Lemoine

The changes in cancer cell surface molecules and intracellular signaling pathways during tumorigenesis make delivery of adenovirus-based cancer therapies inefficient. Here we have identified carcinoembryonic antigen- related cell adhesion molecule 6 (CEACAM6) as a cellular protein that restricts the ability of adenoviral vectors to infect cancer cells. We have demonstrated that CEACAM6 can antagonize the Src signaling pathway, downregulate cancer cell cytoskeleton proteins, and block adenovirus trafficking to the nucleus of human pancreatic cancer cells. Similar to CEACAM6 overexpression, treatment with a Src-selective inhibitor significantly reduced adenovirus replication in these cancer cells and normal human epithelial cells. In a mouse xenograft tumor model, siRNA-mediated knockdown of CEACAM6 also significantly enhanced the antitumor effect of an oncolytic adenovirus. We propose that CEACAM6-associated signaling pathways could be potential targets for the development of biomarkers to predict the response of patients to adenovirus-based therapies, as well as for the development of more potent adenovirus-based therapeutics.


Carcinogenesis | 2011

TRPV1-antagonist AMG9810 promotes mouse skin tumorigenesis through EGFR/Akt signaling

Shengqing Li; Ann M. Bode; Feng Zhu; Kangdong Liu; Jishuai Zhang; Myoung Ok Kim; Kanamata Reddy; Tatyana A. Zykova; Wei Ya Ma; Andria Carper; Alyssa Langfald; Zigang Dong

In addition to capsaicin, a transient receptor potential channel vanilloid subfamily 1 (TRPV1) agonist, two kinds of antagonists against this receptor are used as therapeutic drugs for pain relief. Indeed, a number of small molecule TRPV1 antagonists are currently undergoing Phase I/II clinical trials to determine their effect on relieving chronic inflammatory pain and migraine headache pain. However, we previously reported that the absence of TRPV1 in mice results in a striking increase in skin carcinogenesis, suggesting that chronic blockade of TRPV1 might increase the risk of tumor development. In this study, we found that a typical TRPV1 antagonist, AMG9810, promotes mouse skin tumor development. The topical application of AMG9810 resulted in a significant increase in the expression level of the epidermal growth factor receptor (EGFR) and its downstream Akt/mammalian target of rapamycin (mTOR)-signaling pathway. This increase was not only observed in AMG9810-treated tumor tissue but was also found in skin tissue treated with AMG9810. In telomerase-immortalized primary human keratinocytes, AMG9810 promoted proliferation that was mediated through the EGFR/Akt/mTOR-signaling pathway. In summary, our data suggest that the TRPV1 antagonist, AMG9810, promotes mouse skin tumorigenesis mediated through EGFR/Akt/mTOR signaling. Thus, the application of this compound for pain relief might increase the risk of skin cancer.


Carcinogenesis | 2011

P21-activated protein kinase (PAK2)-mediated c-Jun phosphorylation at 5 threonine sites promotes cell transformation

Tingting Li; Jishuai Zhang; Feng Zhu; Weihong Wen; Tatyana A. Zykova; Xiang Li; Kangdong Liu; Cong Peng; Wei Ya Ma; Guozheng Shi; Ziming Dong; Ann M. Bode; Zigang Dong

The oncoprotein c-Jun is one of the components of the activator protein-1 (AP-1) transcription factor complex. AP-1 regulates the expression of many genes and is involved in a variety of biological functions such as cell transformation, proliferation, differentiation and apoptosis. AP-1 activates a variety of tumor-related genes and therefore promotes tumorigenesis and malignant transformation. Here, we found that epidermal growth factor (EGF) induces phosphorylation of c-Jun by P21-activated kinase (PAK) 2. Our data showed that PAK2 binds and phosphorylates c-Jun at five threonine sites (Thr2, Thr8, Thr89, Thr93 and Thr286) in vitro and ex vivo. Knockdown of PAK2 in JB6 Cl41 (P+) cells had no effect on c-Jun phosphorylation at Ser63 or Ser73 but resulted in decreases in EGF-induced anchorage-independent cell transformation, proliferation and AP-1 activity. Mutation at all five c-Jun threonine sites phosphorylated by PAK2 decreased the transforming ability of JB6 cells. Knockdown of PAK2 in SK-MEL-5 melanoma cells also decreased colony formation, proliferation and AP-1 activity. These results indicated that PAK2/c-Jun signaling plays an important role in EGF-induced cell proliferation and transformation.


Carcinogenesis | 2012

Quercetin-3-methyl ether suppresses proliferation of mouse epidermal JB6 P+ cells by targeting ERKs

Jixia Li; Madhusoodanan Mottamal; Haitao Li; Kangdong Liu; Feng Zhu; Yong Yeon Cho; Carlos P. Sosa; Keyuan Zhou; G. Tim Bowden; Ann M. Bode; Zigang Dong

Chemoprevention has been acknowledged as an important and practical strategy for the management of skin cancer. Quercetin-3-methyl ether, a naturally occurring compound present in various plants, has potent anticancer-promoting activity. We identified this compound by in silico virtual screening of the Traditional Chinese Medicine Database using extracellular signal-regulated kinase 2 (ERK2) as the target protein. Here, we showed that quercetin-3-methyl ether inhibited proliferation of mouse skin epidermal JB6 P+ cells in a dose- and time-dependent manner by inducing cell cycle G(2)-M phase accumulation. It also suppressed 12-O-tetradecanoylphorbol-13-acetate-induced neoplastic cell transformation in a dose-dependent manner. Its inhibitory effect was greater than quercetin. The activation of activator protein-1 was dose-dependently suppressed by quercetin-3-methyl ether treatment. Western blot and kinase assay data revealed that quercetin-3-methyl ether inhibited ERKs kinase activity and attenuated phosphorylation of ERKs. Pull-down assays revealed that quercetin-3-methyl ether directly binds with ERKs. Furthermore, a loss-of-function ERK2 mutation inhibited the effectiveness of the quercetin-3-methyl ether. Overall, these results indicated that quercetin-3-methyl ether exerts potent chemopreventive activity by targeting ERKs.


Cancer Prevention Research | 2014

Kaempferol Targets RSK2 and MSK1 to Suppress UV Radiation-Induced Skin Cancer

Ke Yao; Hanyong Chen; Kangdong Liu; Alyssa Langfald; Yang G; Yiguo Zhang; Dong Hoon Yu; Myoung Ok Kim; Mee-Hyun Lee; Haitao Li; Ki Beom Bae; Hong-Gyum Kim; Wei Ya Ma; Ann M. Bode; Zigang Dong

Solar UV (SUV) irradiation is a major factor in skin carcinogenesis, the most common form of cancer in the United States. The MAPK cascades are activated by SUV irradiation. The 90 kDa ribosomal S6 kinase (RSK) and mitogen and stress-activated protein kinase (MSK) proteins constitute a family of protein kinases that mediate signal transduction downstream of the MAPK cascades. In this study, phosphorylation of RSK and MSK1 was upregulated in human squamous cell carcinoma (SCC) and SUV-treated mouse skin. Kaempferol, a natural flavonol, found in tea, broccoli, grapes, apples, and other plant sources, is known to have anticancer activity, but its mechanisms and direct target(s) in cancer chemoprevention are unclear. Kinase array results revealed that kaempferol inhibited RSK2 and MSK1. Pull-down assay results, ATP competition, and in vitro kinase assay data revealed that kaempferol interacts with RSK2 and MSK1 at the ATP-binding pocket and inhibits their respective kinase activities. Mechanistic investigations showed that kaempferol suppresses RSK2 and MSK1 kinase activities to attenuate SUV-induced phosphorylation of cAMP-responsive element binding protein (CREB) and histone H3 in mouse skin cells. Kaempferol was a potent inhibitor of SUV-induced mouse skin carcinogenesis. Further analysis showed that skin from the kaempferol-treated group exhibited a substantial reduction in SUV-induced phosphorylation of CREB, c-Fos, and histone H3. Overall, our results identify kaempferol as a safe and novel chemopreventive agent against SUV-induced skin carcinogenesis that acts by targeting RSK2 and MSK1. Cancer Prev Res; 7(9); 958–67. ©2014 AACR.


Carcinogenesis | 2012

Aloe-emodin suppresses prostate cancer by targeting the mTOR complex 2

Kangdong Liu; Chan-Mi Park; Shengqing Li; Ki Won Lee; Haidan Liu; Long He; Nak Kyun Soung; Jong Seog Ahn; Ann M. Bode; Ziming Dong; Bo Yeon Kim; Zigang Dong

Phosphatidylinositol 3-kinase (PI3-K) amplification and phosphatase and tensin homolog (PTEN) deletion-caused Akt activation contribute to the development of prostate cancer. Mammalian target of rapamycin complex 2 (mTORC2) is a kinase complex comprised of mTOR, Rictor, mSin1, mLST8/GβL and PRR5 and functions in the phosphorylation of Akt at Ser473. Herein, we report that mTORC2 plays an important role in PC3 androgen refractory prostate cell proliferation and anchorage-independent growth. Aloe-emodin, a natural compound found in aloe, inhibited both proliferation and anchorage-independent growth of PC3 cells. Protein content analysis suggested that activation of the downstream substrates of mTORC2, Akt and PKCα, was inhibited by aloe-emodin treatment. Pull-down assay and in vitro kinase assay results indicated that aloe-emodin could bind with mTORC2 in cells and inhibit its kinase activity. Aloe-emodin also exhibited tumor suppression effects in vivo in an athymic nude mouse model. Collectively, our data suggest that mTORC2 plays an important role in prostate cancer development and aloe-emodin suppresses prostate cancer progression by targeting mTORC2.


Tumor Biology | 2014

Myricetin exerts anti-proliferative, anti-invasive, and pro-apoptotic effects on esophageal carcinoma EC9706 and KYSE30 cells via RSK2

Wenqiao Zang; Tao Wang; Yuanyuan Wang; Min Li; Xiaoyan Xuan; Yunyun Ma; Yuwen Du; Kangdong Liu; Ziming Dong; Guoqiang Zhao

Myricetin, a common dietary flavonoid, is widely distributed in fruits and vegetables and is used as a health food supplement based on its anti-tumor properties. However, the effect and mechanisms of myricetin in esophageal carcinoma are not fully understood. Here, we demonstrated the effect of myricetin on the proliferation, apoptosis, and invasion of the esophageal carcinoma cell lines EC9706 and KYSE30 and explored the underlying mechanism and target protein(s) of myricetin. CCK-8 assay, transwell invasion assay, wound-healing assay, cell cycle analysis, and apoptosis assay were used to evaluate the effects of myricetin on cell proliferation, invasion, and apoptosis. Nude mouse tumor xenograft model was built to understand the interaction between myricetin and NTD RSK2. Pull-down assay was used to verify molecular mechanism. Myricetin inhibited proliferation and invasion and induced apoptosis of EC9706 and KYSE30 cells. Moreover, myricetin was shown to bind RSK2 through the NH2-terminal kinase domain. Finally, myricetin inhibited EC9706 and KYSE30 cell proliferation through Mad1 and induced cell apoptosis via Bad. Myricetin inhibits the proliferation and invasion and induces apoptosis in EC9706 and KYSE30 cells via RSK2. Myricetin exerts anti-proliferative, anti-invasive, and pro-apoptotic effects on esophageal carcinoma EC9706 and KYSE30 cells via RSK2. Our results provide novel insight into myricetin as a potential agent for the prevention and treatment of esophageal carcinoma.

Collaboration


Dive into the Kangdong Liu's collaboration.

Top Co-Authors

Avatar

Zigang Dong

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Ann M. Bode

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ke Yao

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Jing Lu

Zhengzhou University

View shared research outputs
Top Co-Authors

Avatar

Hanyong Chen

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

Wei Ya Ma

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Feng Zhu

University of Minnesota

View shared research outputs
Researchain Logo
Decentralizing Knowledge