Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kangho Ahn is active.

Publication


Featured researches published by Kangho Ahn.


Nanotoxicology | 2015

Health surveillance study of workers who manufacture multi-walled carbon nanotubes

Jong Seong Lee; Young Chul Choi; Jae Hoon Shin; Ji Hyun Lee; Yurim Lee; So Young Park; Jin Ee Baek; Jung Duck Park; Kangho Ahn; Il Je Yu

Abstract While many in vivo and in vitro toxicology studies of multi-walled carbon nanotubes (MWCNTs) have already indicated that exposure to MWCNTs can potentially induce health effects in humans, the actual health effects of MWCNTs among exposed workers are not yet known. Moreover, the levels of exposure and internal doses of MWCNTs are becoming more and more important for estimating the health effects resulting from exposure to MWCNTs. However, information on biomonitoring and exposure to MWCNTs remains limited. Therefore, the authors conducted a health surveillance study in a workplace that manufactures MWCNTs, including assessment of the personal and area exposure levels to MWCNTs, a walk-through evaluation of the manufacturing process, and collection of blood and exhaled breath condensates (EBCs) from the MWCNT manufacturing and office workers. In addition, a pulmonary function test was also conducted on the MWCNT manufacturing workers (9) and office workers (4). The worker exposure to elemental carbon was found to be 6.2–9.3 μg/m3 in the personal samplings and 5.5–7.3 μg/m3 in the area samplings. Notwithstanding, the workers exhibited a normal range of hematology and blood biochemistry values and normal lung function parameters. When analyzing the EBCs, the malondialdehyde (MDA), 4-hydroxy-2-hexenal (4-HHE) and n-hexanal levels in the MWCNT manufacturing workers were significantly higher than those in the office workers. The MDA and n-hexanal levels were also significantly correlated with the blood molybdenum concentration, suggesting MDA, n-hexanal and molybdenum as useful biomarkers of MWCNT exposure.


Journal of Toxicology and Environmental Health | 2010

Toxicity and clearance of intratracheally administered multiwalled carbon nanotubes from murine lung.

Ji-Eun Kim; Hwang-Tae Lim; Arash Minai-Tehrani; Jung-Taek Kwon; Ji-Young Shin; Chang-Gyu Woo; Mansoo Choi; Jongho Baek; Dae Hong Jeong; Y. Ha; Chanhee Chae; Kyung-Suk Song; Kangho Ahn; Ji Hyun Lee; Ha-Jung Sung; Il-Je Yu; George R. Beck; Myung-Haing Cho

Carbon nanotubes (CNT) are known to have widespread industrial applications; however, several reports indicated that these compounds may be associated with adverse effects in humans. In this study, multiwalled carbon nanotubes were administered to murine lungs intratracheally to determine whether acute and chronic pulmonary toxicity occurred. In particular, pristine multiwalled carbon nanotubes (PMWCNT) and acid-treated multiwalled carbon nanotubes (TMWCNT) were used in this study. In broncheoalveolar lavage fluid (BALF) cell analysis, PMWCNT induced more severe acute inflammatory cell recruitment than TMWCNT. Histopathologically, both PMWCNT and TMWCNT induced multifocal inflammatory granulomas in a dose-dependent manner. The observed granulomas were reversible, with TMWCNT-induced granulomas diminishing faster than PMWCNT-induced granulomas. Although the area of granuloma reduced with time, hyperplasia and dysplastic characteristics such as mitotic figures, anisokaryosis, and anisocytosis were still observed. These findings demonstrate that MWCNT induces granulomatous inflammation, and the duration and pattern of inflammation seem to vary depending upon the types of MWCNT to which mice are exposed. Therefore, toxicity studies on various types of CNT are needed as the responsiveness to these compounds differs.


Nanotoxicology | 2016

28-Day inhalation toxicity of graphene nanoplatelets in Sprague-Dawley rats.

Jin Kwon Kim; Jae Hoon Shin; Jong Seong Lee; Joo Hwan Hwang; Ji Hyun Lee; Jin Ee Baek; Tae Gyu Kim; Boo Wook Kim; Jin Sik Kim; Gun Ho Lee; Kangho Ahn; Sung Gu Han; Dhimiter Bello; Il Je Yu

Abstract Graphene, a two-dimensional engineered nanomaterial, is now being used in many applications, such as electronics, biological engineering, filtration, lightweight and strong nanocomposite materials, and energy storage. However, there is a lack of information on the potential health effects of graphene in humans based on inhalation, the primary engineered nanomaterial exposure pathway in workplaces. Thus, an inhalation toxicology study of graphene was conducted using a nose-only inhalation system for 28 days (6 h/day and 5 days/week) with male Sprague-Dawley rats that were then allowed to recover for 1-, 28-, and 90-day post-exposure period. Animals were separated into 4 groups (control, low, moderate, and high) with 15 male rats (5 rats per time point) in each group. The measured mass concentrations for the low, moderate, and high exposure groups were 0.12, 0.47, and 1.88 mg/m3, respectively, very close to target concentrations of 0.125, 0.5, and 2 mg/m3. Airborne graphene exposure was monitored using several real-time instrumentation over 10 nm to 20 μm for size distribution and number concentration. The total and respirable elemental carbon concentrations were also measured using filter sampling. Graphene in the air and biological media was traced using transmission electron microscopy. In addition to mortality and clinical observations, the body weights and food consumption were recorded weekly. At the end of the study, the rats were subjected to a full necropsy, blood samples were collected for blood biochemical tests, and the organ weights were measured. No dose-dependent effects were recorded for the body weights, organ weights, bronchoalveolar lavage fluid inflammatory markers, and blood biochemical parameters at 1-day post-exposure and 28-day post-exposure. The inhaled graphenes were mostly ingested by macrophages. No distinct lung pathology was observed at the 1-, 28- and 90-day post-exposure. The inhaled graphene was translocated to lung lymph nodes. The results of this 28-day graphene inhalation study suggest low toxicity and a NOAEL of no less than 1.88 mg/m3.


Inhalation Toxicology | 2013

Exposure assessment of workers in printed electronics workplace

Ji Hyun Lee; Eun Kyung Sohn; Jin Soo Ahn; Kangho Ahn; Keun Soo Kim; Jong Hwan Lee; Taik Min Lee; Il Je Yu

Abstract Printed electronics uses converging technologies, such as printing, fine mechanics, nanotechnology, electronics and other new technologies. Consequently, printed electronics raises additional health and safety concerns to those experienced in the traditional printing industry. This study investigated two printed electronics workplaces based on a walk-through survey and personal and area sampling. All the printed electronics operations were conducted in a cleanroom. No indication of exposure to excess silver nanoparticles or carbon nanotubes (CNTs) was found. While the organic solvents were lower than current occupational exposure limits, there was a lack of engineering controls, such as local exhaust ventilation, correct enclosure and duct connections. There was also an insufficient quantity of personal protective equipment, and some organic solvents not described in the safety data sheets (SDSs) were detected in the air samples. Plus, the cleaning work, a major emissions operation, was not conducted within a hood, and the cleaning waste was not properly disposed of. Therefore, the present exposure assessment results from two printed electronics workplaces suggest that the printed electronics industry needs to take note of the occupational safety and health risks and hazards already established by the traditional printing industry, along with new risks and hazards originating from converging technologies such as nanotechnology.


Nanotoxicology | 2015

5-Day repeated inhalation and 28-day post-exposure study of graphene

Jae Hoon Shin; Sung Gu Han; Jin Kwon Kim; Boo Wook Kim; Joo Hwan Hwang; Jong Seong Lee; Ji Hyun Lee; Jin Ee Baek; Tae Gyu Kim; Keun Soo Kim; Heon Sang Lee; Nam Woong Song; Kangho Ahn; Il Je Yu

Abstract Graphene has recently been attracting increasing attention due to its unique electronic and chemical properties and many potential applications in such fields as semiconductors, energy storage, flexible electronics, biosensors and medical imaging. However, the toxicity of graphene in the case of human exposure has not yet been clarified. Thus, a 5-day repeated inhalation toxicity study of graphene was conducted using a nose-only inhalation system for male Sprague-Dawley rats. A total of three groups (20 rats per group) were compared: (1) control (ambient air), (2) low concentration (0.68 ± 0.14 mg/m3 graphene) and (3) high concentration (3.86 ± 0.94 mg/m3 graphene). The rats were exposed to graphene for 6 h/day for 5 days, followed by recovery for 1, 3, 7 or 28 days. The bioaccumulation and macrophage ingestion of the graphene were evaluated in the rat lungs. The exposure to graphene did not change the body weights or organ weights of the rats after the 5-day exposure and during the recovery period. No statistically significant difference was observed in the levels of lactate dehydrogenase, protein and albumin between the exposed and control groups. However, graphene ingestion by alveolar macrophages was observed in the exposed groups. Therefore, these results suggest that the 5-day repeated exposure to graphene only had a minimal toxic effect at the concentrations and time points used in this study.


BioMed Research International | 2015

Pulmonary Responses of Sprague-Dawley Rats in Single Inhalation Exposure to Graphene Oxide Nanomaterials

Sung Gu Han; Jin Kwon Kim; Jae Hoon Shin; Joo Hwan Hwang; Jong Seong Lee; Tae Gyu Kim; Ji-Hyun Lee; Gun Ho Lee; Keun Soo Kim; Heon Sang Lee; Nam Woong Song; Kangho Ahn; Il Je Yu

Graphene is receiving increased attention due to its potential widespread applications in future. However, the health effects of graphene have not yet been well studied. Therefore, this study examined the pulmonary effects of graphene oxide using male Sprague-Dawley rats and a single 6-hour nose-only inhalation technique. Following the exposure, the rats were allowed to recover for 1 day, 7 days, or 14 days. A total of three groups were compared: control (fresh air), low concentration (0.46 ± 0.06 mg/m3), and high concentration (3.76 ± 0.24 mg/m3). The exposure to graphene oxide did not induce significant changes in the body weights, organ weights, and food consumption during the 14 days of recovery time. The microalbumin and lactate dehydrogenase levels in the bronchoalveolar lavage (BAL) fluid were not significantly changed due to the exposure. Similarly, total cell count, macrophages, polymorphonuclear leukocytes, and lymphocytes were not significantly altered in the BAL fluid. Plus, the histopathological examination of the rat lungs only showed an uptake of graphene oxide in the alveolar macrophages of the high-concentration group. Therefore, these results demonstrate that the single inhalation exposure to graphene oxide induce minimal toxic responses in rat lungs at the concentrations and time points used in the present study.


Inhalation Toxicology | 2016

Exposure monitoring of graphene nanoplatelets manufacturing workplaces

Ji Hyun Lee; Jong Hun Han; Jae Hyun Kim; Boowook Kim; Dhimiter Bello; Jin Kwon Kim; Gun Ho Lee; Eun Kyung Sohn; Kyungmin Lee; Kangho Ahn; Elaine M. Faustman; Il Je Yu

Abstract Graphenes have emerged as a highly promising, two-dimensional engineered nanomaterial that can possibly substitute carbon nanotubes. They are being explored in numerous R&D and industrial applications in laboratories across the globe, leading to possible human and environmental exposures to them. Yet, there are no published data on graphene exposures in occupational settings and no readily available methods for their detection and quantitation exist. This study investigates for the first time the potential exposure of workers and research personnel to graphenes in two research facilities and evaluates the status of the control measures. One facility manufactures graphene using graphite exfoliation and chemical vapor deposition (CVD), while the other facility grows graphene on a copper plate using CVD, which is then transferred to a polyethylene terephthalate (PET) sheet. Graphene exposures and process emissions were investigated for three tasks – CVD growth, exfoliation, and transfer – using a multi-metric approach, which utilizes several direct reading instruments, integrated sampling, and chemical and morphological analysis. Real-time instruments included a dust monitor, condensation particle counter (CPC), nanoparticle surface area monitor, scanning mobility particle sizer, and an aethalometer. Morphologically, graphenes and other nanostructures released from the work process were investigated using a transmission electron microscope (TEM). Graphenes were quantified in airborne respirable samples as elemental carbon via thermo-optical analysis. The mass concentrations of total suspended particulate at Workplaces A and B were very low, and elemental carbon concentrations were mostly below the detection limit, indicating very low exposure to graphene or any other particles. The real-time monitoring, especially the aethalometer, showed a good response to the released black carbon, providing a signature of the graphene released during the opening of the CVD reactor at Workplace A. The TEM observation of the samples obtained from Workplaces A and B showed graphene-like structures and aggregated/agglomerated carbon structures. Taken together, the current findings on common scenarios (exfoliation, CVD growth, and transfer), while not inclusive of all graphene manufacturing processes, indicate very minimal graphene or particle exposure at facilities manufacturing graphenes with good manufacturing practices.


Journal of Nanomaterials | 2015

Case study on risk evaluation of silver nanoparticle exposure from antibacterial sprays containing silver nanoparticles

Ellen Kim; Ji Hyun Lee; Jin Kwon Kim; Gun Ho Lee; Kangho Ahn; Jung Duck Park; Il Je Yu

This study evaluated the risk of silver nanoparticle (AgNP) exposure from antibacterial sprays containing AgNPs. Using an exposure simulation chamber as the setting for the experiment, various instruments, including a scanning mobility particle sizer (SMPS), condensation particle counter (CPC), dust monitor, and mixed cellulose esters (MCE) filters, are connected to the chamber to measure the exposure levels of AgNPs when using the sprays. To assess potential risks to consumers, margin of exposure (MOE) approach was used to assess risk in which a calculated MOE was compared with a target MOE. When evaluating the risk of antibacterial sprays to inhalation exposure using the MOE, spraying a whole can and spraying an air conditioner both resulted in a high-risk concern level with a MOE ranging from 59 to 146 that was much lower than the no-risk concern level of 1000, while some spray showed a MOE 2049 with no-risk concern level. The dermal exposure levels with a single layer of clothing were estimated at 2-50 µg/kg/day with a MOE ranging from 20,000 to 500,000. Therefore, the current results showed the possibility of high-risk inhalation exposure to AgNPs released when using antibacterial sprays.


Inhalation Toxicology | 2012

Evaluation of newly developed nose-only inhalation exposure chamber for nanoparticles

KiSoo Jeon; Il Je Yu; Kangho Ahn

In this study, a direct-flow-type nose-only exposure chamber developed for inhalation toxicity experiments using a numerical analysis and experiments is evaluated. Maintaining a uniform flow rate and test article concentration are the critical factors when designing an inhalation exposure chamber. Therefore, this study evaluated whether the flow rate and particle size distribution at the injection nozzles at each port could be maintained with a deviation below 10%. To achieve this requirement, a nose-only exposure chamber flow field was simulated using a numerical analysis method, i.e. computational fluid dynamics (CFD) code FLUENT 6.3.26. Based on the simulation results, a test chamber was built and tested. The flow velocity was measured at the injection nozzle of the chamber and the aerosol particle size distribution was also measured at each port while inserting the test material into the exposure chamber. The results indicated that a uniform flow field distribution at each stage and port, the deviation of the flow velocity, and particle size distribution were all within 10%. Thus, the resulting nose-only exposure chamber could be described as well-designed.


Toxicology: Open Access | 2017

Development of International Standard on Nano Aerosol Generation for Inhalation Toxicology Study

Kangho Ahn; David Ensor; Monita Shama; Michele Ostraat; Jeremy Ramsden; Jun Kanno; Mahmound Ghazikhansari; Ruben Lazos; Mary Guumian; Flemming R. Cassee; Wim H. de Jong; KiSoo Jeon; Il Je Yu

Development ISO TR 19601 : Aerosol generation for NOAA (nano-objects and their aggregates and agglomerates) air exposure studies is completed recently. The technical report (TR) reviews methods for generating aerosols of NOAA for in vivo and in vitro inhalation studies. The goals of this technical report is to aid in selecting appropriates NOAA aerosol generator to perform a planned toxicology design. The TR describes how to approach air exposure study design after considering workplace exposure scenario with providing a flow chart to select a proper NOAA generator for aimed study. The TR presents variety of NOAA generator currently used, and describes the principles of operation, advantage at limitation of the NOAA generators. This TR will assist investigators on NOAA inhalation toxicity testing how to design inhalation exposure study with selection of proper generators. This mini-review summarizes contents of the technical report and provides the current status of science in NOAA aerosol generation.

Collaboration


Dive into the Kangho Ahn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Nam Woong Song

Korea Research Institute of Standards and Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jae Hyuck Sung

Seoul National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge