Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kanokwan Boe is active.

Publication


Featured researches published by Kanokwan Boe.


Biotechnology and Bioengineering | 2012

Simultaneous hydrogen utilization and in situ biogas upgrading in an anaerobic reactor.

Gang Luo; Sara Johansson; Kanokwan Boe; Li Xie; Qi Zhou; Irini Angelidaki

The possibility of converting hydrogen to methane and simultaneous upgrading of biogas was investigated in both batch tests and fully mixed biogas reactor, simultaneously fed with manure and hydrogen. Batch experiments showed that hydrogen could be converted to methane by hydrogenotrophic methanogenesis with conversion of more than 90% of the consumed hydrogen to methane. The hydrogen consumption rates were affected by both P(H₂) (hydrogen partial pressure) and mixing intensity. Inhibition of propionate and butyrate degradation by hydrogen (1 atm) was only observed under high mixing intensity (shaking speed 300 rpm). Continuous addition of hydrogen (flow rate of 28.6 mL/(L/h)) to an anaerobic reactor fed with manure, showed that more than 80% of the hydrogen was utilized. The propionate and butyrate level in the reactor was not significantly affected by the hydrogen addition. The methane production rate of the reactor with H₂ addition was 22% higher, compared to the control reactor only fed with manure. The CO₂ content in the produced biogas was only 15%, while it was 38% in the control reactor. However, the addition of hydrogen resulted in increase of pH (from 8.0 to 8.3) due to the consumption of bicarbonate, which subsequently caused slight inhibition of methanogenesis.


Bioresource Technology | 2011

Anaerobic co-digestion of desugared molasses with cow manure; focusing on sodium and potassium inhibition.

Cheng Fang; Kanokwan Boe; Irini Angelidaki

Desugared molasses (DM), a syrup residue from beet-molasses, was investigated for biogas production in both batch and in continuously-stirred tank reactor (CSTR) experiments. DM contained 2-3 times higher concentration of ions than normal molasses, which could inhibit the biogas process. The effect of sodium and potassium concentration on biogas production from manure was also investigated. Fifty percent inhibition occurred at sodium and potassium concentration of 11 and 28 g/L, respectively. The reactor experiments were carried out to investigate the biogas production from DM under different dilutions with water and co-digestion with manure. Stable operation at maximum methane yield of 300 mL-CH4/gVS-added was obtained at a mixture of 5% DM in cow manure. The biogas process was inhibited at DM concentrations higher than 15%. Manure was a good base substrate for co-digestion, and a stable anaerobic digestion could be achieved by co-digesting DM with manure at the concentration below 15% DM.


Water Research | 2009

Serial CSTR digester configuration for improving biogas production from manure.

Kanokwan Boe; Irini Angelidaki

A new configuration of manure digesters for improving biogas production has been investigated in laboratory scale. A single thermophilic continuous-flow stirred tank reactor (CSTR) operated with a hydraulic retention time (HRT) of 15 days was compared to a serial CSTR configuration with volume distribution ratio of 80/20 and 90/10, and total HRT of 15 days. The results showed that the serial CSTR could obtain 11% higher biogas yield compared to the single CSTR. The increased biogas yield in the serial CSTR was mainly from the second reactor, which accounted for 16% and 12% of total biogas yield in the 90/10 and 80/20 configuration, respectively. VFA concentration in the serial CSTR was high in the first reactor but very low in the second reactor. The results from organic pulse load test showed that the second reactor in serial CSTR helped utilizing VFA produced from overloading in the first reactor, which improved the effluent quality and conversion efficiency of the serial CSTR.


Bioresource Technology | 2011

Biogas production from potato-juice, a by-product from potato-starch processing, in upflow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors.

Cheng Fang; Kanokwan Boe; Irini Angelidaki

In this study, the utilization of potato-juice, the organic by-product from potato-starch processing, for biogas production was investigated in batch assay and in high rate anaerobic reactors. The maximum methane potential of the potato-juice determined by batch assay was 470 mL-CH(4)/gVS-added. Anaerobic digestion of potato-juice in an EGSB reactor could obtain a methane yield of 380 mL-CH(4)/gVS-added at the organic loading rate of 3.2 gCOD/(L-reactor.d). In a UASB reactor, higher organic loading rate of 5.1 gCOD/(L-reactor.d) could be tolerated, however, it resulted in a lower methane yield of 240 mL-CH(4)/gVS-added. The treatment of reactor effluent was also investigated. By acidification with sulfuric acid to pH lower than 5, almost 100% of the ammonia content in the effluent could be retained during the successive up-concentration process step. The reactor effluent could be up-concentrated by evaporation to minimize its volume, and later be utilized as fertilizer.


Water Research | 2011

Anaerobic co-digestion of by-products from sugar production with cow manure

Cheng Fang; Kanokwan Boe; Irini Angelidaki

Sugar beet leaves (SBL), sugar beet top (SBT), sugar beet pulp (SBP) and desugared molasses (DM) are by-products from the sugar production. In the present study we investigated the potential of SBL, SBT and SBP as feedstock for biogas production. The maximum methane potential of SBL, SBT and SBP determined by batch assays was found to be 490, 500 and 240 mL-CH(4)/gVS-added respectively. Three reactor experiments were carried out to investigate the effect of co-digestion of SBP, DM and manure at different ratios, on biogas process efficiency and stability. The results showed that DM was potentially inhibiting the biogas process and the co-digestion of SBP and DM was only successful at high dilution with manure or water. In contrast, SBP was shown to be a good substrate for biogas production and the methane yield of 280 mL-CH(4)/gVS-added was obtained in a thermophilic continuously operated reactor, co-digesting 50% of SBP with cow manure.


Journal of Hazardous Materials | 2011

Comparison of UASB and EGSB reactors performance, for treatment of raw and deoiled palm oil mill effluent (POME)

Cheng Fang; Sompong O-Thong; Kanokwan Boe; Irini Angelidaki

Anaerobic digestion of palm oil mill effluent (POME) and deoiled POME was investigated both in batch assays and continuous reactor experiments using up-flow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors. The methane potential determined from batch assays of POME and deoiled POME was 503 and 610 mL-CH(4)/gVS-added, respectively. For the treatment of POME in continuously fed reactors, both in UASB and EGSB reactors more than 90% COD removal could be obtained, at HRT of 5 days, corresponding to OLR of 5.8 gVS/(L-reactor.d). Similar methane yields of 436-438 mL-CH(4)/gVS-added were obtained for UASB and EGSB respectively. However, for treatment of deoiled POME, both UASB and EGSB reactors could operate at lower OLR of 2.6 gVS/(L-reactor.d), with the methane yield of 600 and 555 mL-CH(4)/gVS-added for UASB and EGSB, respectively. The higher methane yield achieved from the deoiled POME was attributed to lower portion of biofibers which are more recalcitrant compared the rest of organic matter in POME. The UASB reactor was found to be more stable than EGSB reactor under the same OLR, as could be seen from lower VFA concentration, especially propionic acid, compared to the EGSB reactor.


Bioresource Technology | 2013

Effect of organic loading rate and feedstock composition on foaming in manure-based biogas reactors

Panagiotis Kougias; Kanokwan Boe; Irini Angelidaki

Foaming is one of the major problems that occasionally occur in biogas plants, affecting negatively the overall digestion process. In the present study, the effect of organic loading rate (OLR) and feedstock composition on foaming was elucidated in continuous reactor experiments. By stepwise increasing the OLR and the concentration of proteins or lipids in the substrate, foaming in biogas reactors was investigated. No foam formation was observed at the OLR of 3.5 g volatile solids/(L-reactor·day). Organic loading was the main factor affecting foam formation in manure digester, while the organic composition, such as content of proteins or lipids were factors that in combination with the organic loading were triggering foaming. More specifically, gelatine could initiate foam formation at a lower OLR than sodium oleate. Moreover, the volume of foam produced by gelatine was relatively stable and was not increased when further increasing either OLR or gelatine concentration in the feed.


Bioresource Technology | 2017

Ex-situ biogas upgrading and enhancement in different reactor systems.

Panagiotis Kougias; Laura Treu; Daniela Peñailillo Benavente; Kanokwan Boe; Stefano Campanaro; Irini Angelidaki

Biogas upgrading is envisioned as a key process for clean energy production. The current study evaluates the efficiency of different reactor configurations for ex-situ biogas upgrading and enhancement, in which externally provided hydrogen and carbon dioxide were biologically converted to methane by the action of hydrogenotrophic methanogens. The methane content in the output gas of the most efficient configuration was >98%, allowing its exploitation as substitute to natural gas. Additionally, use of digestate from biogas plants as a cost efficient method to provide all the necessary nutrients for microbial growth was successful. High-throughput 16S rRNA sequencing revealed that the microbial community was resided by novel phylotypes belonging to the uncultured order MBA08 and to Bacteroidales. Moreover, only hydrogenotrophic methanogens were identified belonging to Methanothermobacter and Methanoculleus genera. Methanothermobacter thermautotrophicus was the predominant methanogen in the biofilm formed on top of the diffuser surface in the bubble column reactor.


Bioresource Technology | 2014

Foam suppression in overloaded manure-based biogas reactors using antifoaming agents.

Panagiotis Kougias; Kanokwan Boe; Panagiotis Tsapekos; Irini Angelidaki

Foam control is an imperative need in biogas plants, as foaming is a major operational problem. In the present study, the effect of oils (rapeseed oil, oleic acid, and octanoic acid) and tributylphosphate on foam reduction and process performance in batch and continuous manure-based biogas reactors was investigated. The compounds were tested in dosages of 0.05%, 0.1% and 0.5% v/vfeed. The results showed that rapeseed oil was most efficient to suppress foam at the dosage of 0.05% and 0.1% v/vfeed, while octanoic acid was most efficient to suppress foam at dosage of 0.5% v/vfeed. Moreover, the addition of rapeseed oil also increased methane yield. In contrast, tributylphosphate, which was very efficient antifoam, was found to be inhibitory to the biogas process.


Bioresource Technology | 2016

Co-digestion of food and garden waste with mixed sludge from wastewater treatment in continuously stirred tank reactors

Temesgen Mathewos Fitamo; Alessio Boldrin; Kanokwan Boe; Irini Angelidaki; Charlotte Scheutz

Co-digestions of urban organic waste were conducted to investigate the effect of the mixing ratio between sludge, food waste, grass clippings and green waste at different hydraulic retention times (HRTs). Compared to the digestion of 100% sludge, the methane yield increased by 48% and 35%, when co-digesting sludge with food waste, grass clippings and garden waste with a corresponding %VS of 10:67.5:15.75:6.75 (R1) and 10:45:31.5:13.5 (R2), respectively. The methane yield remained constant at around 425 and 385 NmL CH4/g VS in R1 and R2, respectively, when the reactors were operated at HRTs of 15, 20 and 30 days. However, the methane yield dropped significantly to 356 (R1) and 315 (R2) NmL CH4/g VS when reducing the HRT to 10 days, indicating that the process was stressed. Since the methane production rate improved significantly with decreasing HRT, the trade-off between yield and productivity was obtained at 15 days HRT.

Collaboration


Dive into the Kanokwan Boe's collaboration.

Top Co-Authors

Avatar

Irini Angelidaki

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Panagiotis Kougias

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Cheng Fang

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Alessio Boldrin

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Charlotte Scheutz

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Temesgen Mathewos Fitamo

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Panagiotis Tsapekos

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge