Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kaori Endo-Umeda is active.

Publication


Featured researches published by Kaori Endo-Umeda.


Drug Metabolism and Disposition | 2012

Vitamin D Receptor Activation Enhances Benzo[a]pyrene Metabolism via CYP1A1 Expression in Macrophages

Manabu Matsunawa; Daisuke Akagi; Shigeyuki Uno; Kaori Endo-Umeda; Sachiko Yamada; Kazumasa Ikeda; Makoto Makishima

Benzo[a]pyrene (BaP) activates the aryl hydrocarbon (AHR) and induces the expression of genes involved in xenobiotic metabolism, including CYP1A1. CYP1A1 is involved not only in BaP detoxification but also in metabolic activation, which results in DNA adduct formation. Vitamin D receptor (VDR) belongs to the NR1I subfamily of the nuclear receptor superfamily, which also regulates expression of xenobiotic metabolism genes. We investigated the cross-talk between AHR and VDR signaling pathways and found that 1α,25-dihydroxyvitamin D3 [1,25(OH)2D3], a potent physiological VDR agonist, enhanced BaP-induced transcription of CYP1A1 in human monocytic U937 cells and THP-1 cells, breast cancer cells, and kidney epithelium-derived cells. 1,25(OH)2D3 alone did not induce CYP1A1, and 1,25(OH)2D3 plus BaP did not increase CYP1A2 or CYP1B1 mRNA expression in U937 cells. The combination of 1,25(OH)2D3 and BaP increased CYP1A1 protein levels, BaP hydroxylation activity, and BaP-DNA adduct formation in U937 cells and THP-1 cells more effectively than BaP alone. The combined effect of 1,25(OH)2D3 and BaP on CYP1A1 mRNA expression in U937 cells and/or THP-1 cells was inhibited by VDR knockdown, VDR antagonists, and α-naphthoflavone, an AHR antagonist. Electrophoretic mobility shift assays and chromatin immunoprecipitation assays showed that VDR directly bound to an everted repeat (ER) 8 motif in the human CYP1A1 promoter. Thus, CYP1A1 is a novel VDR target gene involved in xenobiotic metabolism. Induction of CYP1A1 by the activation of VDR and AHR may contribute to BaP-mediated toxicity and the physiological function of this enzyme.


Journal of Medicinal Chemistry | 2012

Design, Synthesis, and Biological Evaluation of Novel Transrepression-Selective Liver X Receptor (LXR) Ligands with 5,11-Dihydro-5-methyl-11-methylene-6H-dibenz[b,e]azepin-6-one Skeleton

Atsushi Aoyama; Kaori Endo-Umeda; Kenji Kishida; Kenji Ohgane; Tomomi Noguchi-Yachide; Hiroshi Aoyama; Minoru Ishikawa; Hiroyuki Miyachi; Makoto Makishima; Yuichi Hashimoto

To obtain novel transrepression-selective liver X receptor (LXR) ligands, we adopted a strategy of reducing the transactivational agonistic activity of the 5,11-dihydro-5-methyl-11-methylene-6H-dibenz[b,e]azepin-6-one derivative 10, which exhibits LXR-mediated transrepressional and transactivational activity. Structural modification of 10 based on the reported X-ray crystal structure of the LXR ligand-binding domain led to a series of compounds, of which almost all exhibited transrepressional activity at 1 or 10 μM but showed no transactivational activity even at 30 μM. Among the compounds obtained, 18 and 22 were confirmed to have LXR-dependent transrepressional activity by using peritoneal macrophages from wild-type and LXR-null mice. A newly developed fluorescence polarization assay indicated that they bind directly to LXRα. Next, further structural modification was performed with the guidance of docking simulations with LXRα, focusing on enhancing the binding of the ligands with LXRα through the introduction of substituents or heteroatom(s). Among the compounds synthesized, compound 48, bearing a hydroxyl group, showed potent, selective, and dose-dependent transrepressional activity.


Molecular Pharmacology | 2012

Differential expression and function of alternative splicing variants of human liver X receptor α.

Kaori Endo-Umeda; Shigeyuki Uno; Ko Fujimori; Yoshikazu Naito; Koichi Saito; Kenji Yamagishi; Yangsik Jeong; Hiroyuki Miyachi; Hiroaki Tokiwa; Sachiko Yamada; Makoto Makishima

The liver X receptor α (LXRα) is a nuclear receptor that is involved in regulation of lipid metabolism, cellular proliferation and apoptosis, and immunity. In this report, we characterize three human LXRα isoforms with variation in the ligand-binding domain (LBD). While examining the expression of LXRα3, which lacks 60 amino acids within the LBD, we identified two novel transcripts that encode LXRα-LBD variants (LXRα4 and LXRα5). LXRα4 has an insertion of 64 amino acids in helix 4/5, and LXRα5 lacks the C-terminal helices 7 to 12 due to a termination codon in an additional exon that encodes an intron in the LXRα1 mRNA. LXRα3, LXRα4, and LXRα5 were expressed at lower levels compared with LXRα1 in many human tissues and cell lines. We also observed weak expression of LXRα3 and LXRα4 in several tissues of mice. LXR ligand treatment induced differential regulation of LXRα isoform mRNA expression in a cell type-dependent manner. Whereas LXRα3 had no effect, LXRα4 has weak transactivation, retinoid X receptor (RXR) heterodimerization, and coactivator recruitment activities. LXRα5 interacted with a corepressor in a ligand-independent manner and inhibited LXRα1 transactivation and target gene expression when overexpressed. Combination of LXRα5 cotransfection and LXRα antagonist treatment produced additive effects on the inhibition of ligand-dependent LXRα1 activation. We constructed structural models of the LXRα4-LBD and its complexes with ligand, RXR-LBD, and coactivator peptide. The models showed that the insertion in the LBD can be predicted to disrupt RXR heterodimerization. Regulation of LXRα pre-mRNA splicing may be involved in the pathogenesis of LXRα-related diseases.


The Journal of Steroid Biochemistry and Molecular Biology | 2014

7-Dehydrocholesterol metabolites produced by sterol 27-hydroxylase (CYP27A1) modulate liver X receptor activity.

Kaori Endo-Umeda; Kaori Yasuda; Kazuyuki Sugita; Akira Honda; Miho Ohta; Minoru Ishikawa; Yuichi Hashimoto; Toshiyuki Sakaki; Makoto Makishima

7-Dehydrocholesterol (7-DHC) is a common precursor of vitamin D3 and cholesterol. Although various oxysterols, oxygenated cholesterol derivatives, have been implicated in cellular signaling pathways, 7-DHC metabolism and potential functions of its metabolites remain poorly understood. We examined 7-DHC metabolism by various P450 enzymes and detected three metabolites produced by sterol 27-hydroxylase (CYP27A1) using high-performance liquid chromatography. Two were further identified as 25-hydroxy-7-DHC and 26/27-hydroxy-7-DHC. These 7-DHC metabolites were detected in serum of a patient with Smith-Lemli-Opitz syndrome. Luciferase reporter assays showed that 25-hydroxy-7-DHC activates liver X receptor (LXR) α, LXRβ and vitamin D receptor and that 26/27-hydroxy-7-DHC induces activation of LXRα and LXRβ, although the activities of both compounds on LXRs were weak. In a mammalian two-hybrid assay, 25-hydroxy-7-DHC and 26/27-hydroxy-7-DHC induced interaction between LXRα and a coactivator fragment less efficiently than a natural LXR agonist, 22(R)-hydroxycholesterol. These 7-DHC metabolites did not oppose agonist-induced LXR activation and interacted directly to LXRα in a manner distinct from a potent agonist. These findings indicate that the 7-DHC metabolites are partial LXR activators. Interestingly, 25-hydroxy-7-DHC and 26/27-hydroxy-7-DHC suppressed mRNA expression of sterol regulatory element-binding protein 1c, an LXR target gene, in HepG2 cells and HaCaT cells, while they weakly increased mRNA levels of ATP-binding cassette transporter A1, another LXR target, in HaCaT cells. Thus, 7-DHC is catabolized by CYP27A1 to metabolites that act as selective LXR modulators.


ACS Medicinal Chemistry Letters | 2015

Styrylphenylphthalimides as Novel Transrepression-Selective Liver X Receptor (LXR) Modulators

Sayaka Nomura; Kaori Endo-Umeda; Atsushi Aoyama; Makoto Makishima; Yuichi Hashimoto; Minoru Ishikawa

Anti-inflammatory effects of liver X receptor (LXR) ligands are thought to be largely due to LXR-mediated transrepression, whereas side effects are caused by activation of LXR-responsive gene expression (transactivation). Therefore, selective LXR modulators that preferentially exhibit transrepression activity should exhibit anti-inflammatory properties with fewer side effects. Here, we synthesized a series of styrylphenylphthalimide analogues and evaluated their structure-activity relationships focusing on LXRs-transactivating-agonistic/antagonistic activities and transrepressional activity. Among the compounds examined, 17l showed potent LXR-transrepressional activity with high selectivity over transactivating activity and did not show characteristic side effects of LXR-transactivating agonists in cells. This representative compound, 17l, was confirmed to have LXR-dependent transrepressional activity and to bind directly to LXRβ. Compound 17l should be useful not only as a chemical tool for studying the biological functions of LXRs transrepression but also as a candidate for a safer agent to treat inflammatory diseases.


Allergology International | 2015

Activation of LXRs using the synthetic agonist GW3965 represses the production of pro-inflammatory cytokines by murine mast cells

Satoshi Nunomura; Yoshimichi Okayama; Kenji Matsumoto; Noriko Hashimoto; Kaori Endo-Umeda; Tadashi Terui; Makoto Makishima; Chisei Ra

BACKGROUND The activation of liver X receptor (LXR) α or LXRβ negatively regulates the expression of pro-inflammatory genes in mammalian cells. We recently reported that 25-hydroxycholesterol, a representative LXR-activating oxysterol, suppresses IL-6 production in mouse mast cells (MCs) following its engagement of the high-affinity IgE receptor (FcεRI). This finding suggests that murine MCs express functional LXRs; however, the mechanisms underlying the LXR-dependent repression of the MC-mediated production of pro-inflammatory cytokines, including IL-6, are poorly understood. Therefore, we employed the synthetic LXR ligand GW3965 to examine the functions of LXRα and LXRβ in the production of pro-inflammatory cytokines by murine bone marrow-derived MCs (BMMCs). METHODS We prepared BMMCs from wild-type (WT), LXRα(-/-), and LXRα/β(-/-) mice. Each group of BMMCs was pretreated with GW3965 and then stimulated with IgE+antigen (Ag) or lipopolysaccharide (LPS). Cytokine production was then analyzed using specific ELISA kits. RESULTS The activation of LXRs by GW3965 significantly attenuated the production of IL-1α and IL-1β, but not of IL-6, in the WT and LXRα(-/-) BMMCs stimulated with IgE+Ag. However, GW3965 treatment decreased the production of IL-1α, IL-1β, and IL-6 in WT and LXRα(-/-) BMMCs upon stimulation with LPS, while the GW3965-mediated suppression of cytokine production was nearly absent from the LXRα/β(-/-) BMMCs. CONCLUSIONS These findings demonstrate, for the first time, that the activation of LXRs by GW3965 attenuates the antigen- or LPS-induced production of pro-inflammatory cytokines, such as IL-1α and IL-1β, in murine MCs and that LXRβ plays an important role in the LXR-mediated repression of cytokine production.


ChemMedChem | 2016

Development of Tetrachlorophthalimides as Liver X Receptor β (LXRβ)‐Selective Agonists

Sayaka Nomura; Kaori Endo-Umeda; Makoto Makishima; Yuichi Hashimoto; Minoru Ishikawa

Liver X receptor (LXR) agonists are candidates for the treatment of atherosclerosis via induction of ABCA1 (ATP‐binding cassette A1) gene expression, which contributes to reverse cholesterol transport (RCT) and to cholesterol efflux from the liver and intestine. However, LXR agonists also induce genes involved in lipogenesis, such as SREBP‐1c (sterol regulatory binding element protein 1c) and FAS (fatty acid synthase), thereby causing an undesirable increase in plasma and hepatic triglyceride (TG) levels. Recent studies indicate that LXRα contributes to lipogenesis in liver, and selective LXRβ activation improves RCT in mice. Therefore, LXRβ‐selective agonists are promising candidates to improve atherosclerosis without increasing plasma or hepatic TG levels. However, the ligand‐binding domains in the two LXR isoforms α/β share high sequence identity, and few LXR ligands show subtype selectivity. In this study we identified a tetrachlorophthalimide analogue as an LXRβ‐selective agonist. Structural development led to (E)‐4,5,6,7‐tetrachloro‐2‐(2‐styrylphenyl)isoindoline‐1,3‐dione (24 a), which shows potent and selective LXRβ agonistic activity in reporter gene assays. In binding assays, compound 24 a bound to LXRβ preferentially over LXRα. It also induced the expression of ABCA1 mRNA but not SREBP‐1c mRNA in cells. Compound 24 a appears to be a promising lead compound for therapeutic agents to treat atherosclerosis without the side effects induced by LXRα/β dual agonists.


The Journal of Steroid Biochemistry and Molecular Biology | 2017

1α-Hydroxy derivatives of 7-dehydrocholesterol are selective liver X receptor modulators

Kaori Endo-Umeda; Atsushi Aoyama; Masato Shimizu; Minoru Ishikawa; Yuichi Hashimoto; Sachiko Yamada; Makoto Makishima

The nuclear receptors liver X receptor (LXR) α and LXRβ are involved in the regulation of lipid metabolism, inflammation, immunity, cellular proliferation, and apoptosis. Oxysterols are endogenous LXR ligands, and also interact with other nuclear and membrane receptors. We previously reported that a phytosterol derivative with a 1α-hydroxy group acts as a potent LXR agonist with intestine-selective action and that 25-hydroxy and 26/27-hydroxy metabolites of 7-dehydrocholesterol (7-DHC) exhibit partial LXR agonism. In this study, we report that 1α-hydroxy derivatives of 7-DHC, 1α-OH-7-DHC and 1,25-(OH)2-7-DHC, act as LXR modulators. Luciferase reporter gene assays showed that 1α-OH-7-DHC activates LXRα and LXRβ and that 1,25-(OH)2-7-DHC activates both LXRs and vitamin D receptor. Examination of cofactor peptide association showed that the 1α-hydroxy derivatives, specifically 1,25-(OH)2-7-DHC, induce association of coactivator/corepressor peptide in a different manner from the agonist T0901317. Docking modeling and alanine mutational analysis of LXRα demonstrated that 1,25-(OH)2-7-DHC interacts with LXRα residues in a manner distinct from potent agonists, such as T0901317 and 24(S),25-epoxycholesterol. 1α-OH-7-DHC and 1,25-(OH)2-7-DHC induced expression of LXR target genes in a cell type- and gene-selective manner. 1,25-(OH)2-7-DHC effectively suppressed lipopolysaccharide-stimulated proinflammatory gene expression in an LXR-dependent manner. Therefore, 1α-hydroxy derivatives, such as 1,25-(OH)2-7-DHC, are unique LXR modulators with selective agonistic activity and potent transrepression function. These oxysterols have potential as LXR-targeted therapeutics for inflammatory disease.


Neuropeptides | 2013

Enhanced transcription of pancreatic peptide YY by 1α-hydroxyvitamin D3 administration in streptozotocin-induced diabetic mice

Jun Ozeki; Mihwa Choi; Kaori Endo-Umeda; Sakurai K; Sadao Amano; Makoto Makishima

Peptide YY (PYY) is a peptide hormone secreted from L cells in the intestine in response to food intake that regulates appetite and gastrointestinal function. PYY is also produced in the pancreatic islets. The vitamin D receptor (VDR) is a nuclear receptor for the active form of vitamin D3 that regulates numerous physiological processes. VDR is expressed in the pancreatic islets and pharmacological VDR activation increases PYY expression in mouse peripheral islet cells. Although VDR is present in insulin-producing β cells as well as non-β cells, the role of β cell VDR in Pyy transcription remains unknown. We treated mice with streptozotocin to ablate β cells in the pancreas. Pancreatic Vdr mRNA expression was decreased in streptozotocin-induced diabetic mice. Interestingly, streptozotocin-treated mice exhibited increased basal Pyy expression and 1α-hydroxyvitamin D3 treatment further increased expression. Moreover, 1α-hydroxyvitamin D3 increased mRNA expression of pancreatic polypeptide and decreased that of neuropeptide Y in streptozotocin-induced diabetic mice but not in control mice. 1α-Hydroxyvitamin D3 slightly increased mRNA expression of insulin but transcript levels were nearly undetectable in the pancreas of streptozotocin-treated mice. Thus, VDR in non-β islet cells is involved in Pyy expression in the mouse pancreas. The findings from this β cell ablation study suggest a hormone transcription regulatory network composed of β cells and non-β cells.


Scientific Reports | 2018

Liver X receptors regulate hepatic F4/80 + CD11b + Kupffer cells/macrophages and innate immune responses in mice

Kaori Endo-Umeda; Hiroyuki Nakashima; Shihoko Komine-Aizawa; Naoki Umeda; Shuhji Seki; Makoto Makishima

The liver X receptors (LXRs), LXRα and LXRβ, are nuclear receptors that regulate lipid homeostasis. LXRs also regulate inflammatory responses in cultured macrophages. However, the role of LXRs in hepatic immune cells remains poorly characterized. We investigated the role of LXRs in regulation of inflammatory responses of hepatic mononuclear cells (MNCs) in mice. Both LXRα and LXRβ were expressed in mouse hepatic MNCs and F4/80+ Kupffer cells/macrophages. LXRα/β-knockout (KO) mice had an increased number of hepatic MNCs and elevated expression of macrophage surface markers and inflammatory cytokines compared to wild-type (WT) mice. Among MNCs, F4/80+CD11b+ cells, not F4/80+CD11b− or F4/80+CD68+ cells, were increased in LXRα/β-KO mice more than WT mice. Isolated hepatic MNCs and F4/80+CD11b+ cells of LXRα/β-KO mice showed enhanced production of inflammatory cytokines after stimulation by lipopolysaccharide or CpG-DNA compared to WT cells, and LXR ligand treatment suppressed lipopolysaccharide-induced cytokine expression in hepatic MNCs. Lipopolysaccharide administration also stimulated inflammatory cytokine production in LXRα/β-KO mice more effectively than WT mice. Thus, LXR deletion enhances recruitment of F4/80+CD11b+ Kupffer cells/macrophages and acute immune responses in the liver. LXRs regulate the Kupffer cell/macrophage population and innate immune and inflammatory responses in mouse liver.

Collaboration


Dive into the Kaori Endo-Umeda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hiroyuki Nakashima

National Defense Medical College

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Shuhji Seki

National Defense Medical College

View shared research outputs
Researchain Logo
Decentralizing Knowledge