Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kaoru Fukami-Kobayashi is active.

Publication


Featured researches published by Kaoru Fukami-Kobayashi.


Nucleic Acids Research | 2002

DNA Data Bank of Japan (DDBJ) for genome scale research in life science

Yoshio Tateno; Tadashi Imanishi; Satoru Miyazaki; Kaoru Fukami-Kobayashi; Naruya Saitou; Hideaki Sugawara; Takashi Gojobori

The DNA Data Bank of Japan (DDBJ, http://www.ddbj.nig.ac.jp) has made an effort to collect as much data as possible mainly from Japanese researchers. The increase rates of the data we collected, annotated and released to the public in the past year are 43% for the number of entries and 52% for the number of bases. The increase rates are accelerated even after the human genome was sequenced, because sequencing technology has been remarkably advanced and simplified, and research in life science has been shifted from the gene scale to the genome scale. In addition, we have developed the Genome Information Broker (GIB, http://gib.genes.nig.ac.jp) that now includes more than 50 complete microbial genome and Arabidopsis genome data. We have also developed a database of the human genome, the Human Genomics Studio (HGS, http://studio.nig.ac.jp). HGS provides one with a set of sequences being as continuous as possible in any one of the 24 chromosomes. Both GIB and HGS have been updated incorporating newly available data and retrieval tools.


Journal of Molecular Biology | 2002

Detecting compensatory covariation signals in protein evolution using reconstructed ancestral sequences.

Kaoru Fukami-Kobayashi; D.R. Schreiber; Steven A. Benner

When protein sequences divergently evolve under functional constraints, some individual amino acid replacements that reverse the charge (e.g. Lys to Asp) may be compensated by a replacement at a second position that reverses the charge in the opposite direction (e.g. Glu to Arg). When these side-chains are near in space (proximal), such double replacements might be driven by natural selection, if either is selectively disadvantageous, but both together restore fully the ability of the protein to contribute to fitness (are together neutral). Accordingly, many have sought to identify pairs of positions in a protein sequence that suffer compensatory replacements, often as a way to identify positions near in space in the folded structure. A charge compensatory signal might manifest itself in two ways. First, proximal charge compensatory replacements may occur more frequently than predicted from the product of the probabilities of individual positions suffering charge reversing replacements independently. Conversely, charge compensatory pairs of changes may be observed to occur more frequently in proximal pairs of sites than in the average pair. Normally, charge compensatory covariation is detected by comparing the sequences of extant proteins at the leaves of phylogenetic trees. We show here that the charge compensatory signal is more evident when it is sought by examining individual branches in the tree between reconstructed ancestral sequences at nodes in the tree. Here, we find that the signal is especially strong when the positions pairs are in a single secondary structural unit (e.g. alpha helix or beta strand) that brings the side-chains suffering charge compensatory covariation near in space, and may be useful in secondary structure prediction. Also, node-node and node-leaf compensatory covariation may be useful to identify the better of two equally parsimonious trees, in a way that is independent of the mathematical formalism used to construct the tree itself. Further, compensatory covariation may provide a signal that indicates whether an episode of sequence evolution contains more or less divergence in functional behavior. Compensatory covariation analysis on reconstructed evolutionary trees may become a valuable tool to analyze genome sequences, and use these analyses to extract biomedically useful information from proteome databases.


Nucleic Acids Research | 2010

NBRP databases: databases of biological resources in Japan.

Yukiko Yamazaki; Ryo Akashi; Yutaka Banno; Takashi R. Endo; Hiroshi Ezura; Kaoru Fukami-Kobayashi; Kazuo Inaba; Tadashi Isa; Katsuhiko Kamei; Fumie Kasai; Masatomo Kobayashi; Nori Kurata; Makoto Kusaba; Tetsuro Matuzawa; Shohei Mitani; Taro Nakamura; Yukio Nakamura; Norio Nakatsuji; Kiyoshi Naruse; Hironori Niki; Eiji Nitasaka; Yuichi Obata; Hitoshi Okamoto; Moriya Okuma; Kazuhiro Sato; Tadao Serikawa; Toshihiko Shiroishi; Hideaki Sugawara; Hideko Urushibara; Masa-Toshi Yamamoto

The National BioResource Project (NBRP) is a Japanese project that aims to establish a system for collecting, preserving and providing bioresources for use as experimental materials for life science research. It is promoted by 27 core resource facilities, each concerned with a particular group of organisms, and by one information center. The NBRP database is a product of this project. Thirty databases and an integrated database-retrieval system (BioResource World: BRW) have been created and made available through the NBRP home page (http://www.nbrp.jp). The 30 independent databases have individual features which directly reflect the data maintained by each resource facility. The BRW is designed for users who need to search across several resources without moving from one database to another. BRW provides access to a collection of 4.5-million records on bioresources including wild species, inbred lines, mutants, genetically engineered lines, DNA clones and so on. BRW supports summary browsing, keyword searching, and searching by DNA sequences or gene ontology. The results of searches provide links to online requests for distribution of research materials. A circulation system allows users to submit details of papers published on research conducted using NBRP resources.


Nucleic Acids Research | 1998

DNA Data Bank of Japan at work on genome sequence data.

Yoshio Tateno; Kaoru Fukami-Kobayashi; Satoru Miyazaki; Hideaki Sugawara; Takashi Gojobori

We at the DNA Data Bank of Japan (DDBJ) (http://www.ddbj.nig.ac.jp) have recently begun receiving, processing and releasing EST and genome sequence data submitted by various Japanese genome projects. The data include those for human, Arabidopsis thaliana, rice, nematode, Synechocystis sp. and Escherichia coli. Since the quantity of data is very large, we organized teams to conduct preliminary discussions with project teams about data submission and handling for release to the public. We also developed a mass submission tool to cope with a large quantity of data. In addition, to provide genome data on WWW, we developed a genome information system using Java. This system (http://mol.genes.nig.ac.jp/ecoli/) can in theory be used for any genome sequence data. These activities will facilitate processing of large quantities of EST and genome data.


Nucleic Acids Research | 2011

The RIKEN integrated database of mammals

Hiroshi Masuya; Yuko Makita; Norio Kobayashi; Koro Nishikata; Yuko Yoshida; Yoshiki Mochizuki; Koji Doi; Terue Takatsuki; Kazunori Waki; Nobuhiko Tanaka; Manabu Ishii; Akihiro Matsushima; Satoshi Takahashi; Atsushi Hijikata; Kouji Kozaki; Teiichi Furuichi; Hideya Kawaji; Shigeharu Wakana; Yukio Nakamura; Atsushi Yoshiki; Takehide Murata; Kaoru Fukami-Kobayashi; S. Sujatha Mohan; Osamu Ohara; Yoshihide Hayashizaki; Riichiro Mizoguchi; Yuichi Obata; Tetsuro Toyoda

The RIKEN integrated database of mammals (http://scinets.org/db/mammal) is the official undertaking to integrate its mammalian databases produced from multiple large-scale programs that have been promoted by the institute. The database integrates not only RIKEN’s original databases, such as FANTOM, the ENU mutagenesis program, the RIKEN Cerebellar Development Transcriptome Database and the Bioresource Database, but also imported data from public databases, such as Ensembl, MGI and biomedical ontologies. Our integrated database has been implemented on the infrastructure of publication medium for databases, termed SciNetS/SciNeS, or the Scientists’ Networking System, where the data and metadata are structured as a semantic web and are downloadable in various standardized formats. The top-level ontology-based implementation of mammal-related data directly integrates the representative knowledge and individual data records in existing databases to ensure advanced cross-database searches and reduced unevenness of the data management operations. Through the development of this database, we propose a novel methodology for the development of standardized comprehensive management of heterogeneous data sets in multiple databases to improve the sustainability, accessibility, utility and publicity of the data of biomedical information.


Bioinformatics | 1998

Formal design and implementation of an improved DDBJ DNA database with a new schema and object-oriented library.

Toshitsugu Okayama; Takuro Tamura; Takashi Gojobori; Yoshio Tateno; Kazuho Ikeo; Satoru Miyazaki; Kaoru Fukami-Kobayashi; Hideaki Sugawara

MOTIVATIONnThe DNA Data Bank of Japan (DDBJ) has developed a new DNA database system with a new schema design to accommodate rapid change and growth of requirements on the system.nnnRESULTSnThe new schema and systems were created using an object-oriented design approach. The design was accomplished in accordance with ANSI/SPARC three-level schema architecture. First, the conceptual schema was designed using a functional model named AIS (associative information structure) and was visualized in extended diagram format. The model is a natural extension of an ER (entity relationship) model and describes real-world objects in binary associations between entities with the concept of order. Second, the schema was mapped on a relational database as a physical schema. All details are concentrated in this schema and the layer lying above enjoys physical independence. Finally, as another layer, external modeling was introduced for the database applications interface. It provides set-at-a-time basis operations and was implemented as a C++ object-oriented library. On this common framework of a new schema, a new annotators workbench named Yamato II and a World Wide Web (WWW) submission system named Sakura have been successfully developed to improve drastically daily transactions in the DDBJ.nnnAVAILABILITYnSakura is available at the following address: http://[email protected]


Plant and Cell Physiology | 2014

Plant Genome DataBase Japan (PGDBj): A Portal Website for the Integration of Plant Genome-Related Databases

Erika Asamizu; Hisako Ichihara; Akihiro Nakaya; Yasukazu Nakamura; Hideki Hirakawa; Takahiro Ishii; Takuro Tamura; Kaoru Fukami-Kobayashi; Yukari Nakajima; Satoshi Tabata

The Plant Genome DataBase Japan (PGDBj, http://pgdbj.jp/?ln=en) is a portal website that aims to integrate plant genome-related information from databases (DBs) and the literature. The PGDBj is comprised of three component DBs and a cross-search engine, which provides a seamless search over the contents of the DBs. The three DBs are as follows. (i) The Ortholog DB, providing gene cluster information based on the amino acid sequence similarity. Over 500,000 amino acid sequences of 20 Viridiplantae species were subjected to reciprocal BLAST searches and clustered. Sequences from plant genome DBs (e.g. TAIR10 and RAP-DB) were also included in the cluster with a direct link to the original DB. (ii) The Plant Resource DB, integrating the SABRE DB, which provides cDNA and genome sequence resources accumulated and maintained in the RIKEN BioResource Center and National BioResource Projects. (iii) The DNA Marker DB, providing manually or automatically curated information of DNA markers, quantitative trait loci and related linkage maps, from the literature and external DBs. As the PGDBj targets various plant species, including model plants, algae, and crops important as food, fodder and biofuel, researchers in the field of basic biology as well as a wide range of agronomic fields are encouraged to perform searches using DNA sequences, gene names, traits and phenotypes of interest. The PGDBj will return the search results from the component DBs and various types of linked external DBs.


DNA Research | 2011

Development of Full-Length cDNAs from Chinese Cabbage (Brassica rapa Subsp. pekinensis) and Identification of Marker Genes for Defence Response

Hiroshi Abe; Yoshihiro Narusaka; Issei Sasaki; Katsunori Hatakeyama; Sadasu Shin-I; Mari Narusaka; Kaoru Fukami-Kobayashi; Satoru Matsumoto; Masatomo Kobayashi

Arabidopsis belongs to the Brassicaceae family and plays an important role as a model plant for which researchers have developed fine-tuned genome resources. Genome sequencing projects have been initiated for other members of the Brassicaceae family. Among these projects, research on Chinese cabbage (Brassica rapa subsp. pekinensis) started early because of strong interest in this species. Here, we report the development of a library of Chinese cabbage full-length cDNA clones, the RIKEN BRC B. rapa full-length cDNA (BBRAF) resource, to accelerate research on Brassica species. We sequenced 10 000 BBRAF clones and confirmed 5476 independent clones. Most of these cDNAs showed high homology to Arabidopsis genes, but we also obtained more than 200 cDNA clones that lacked any sequence homology to Arabidopsis genes. We also successfully identified several possible candidate marker genes for plant defence responses from our analysis of the expression of the Brassica counterparts of Arabidopsis marker genes in response to salicylic acid and jasmonic acid. We compared gene expression of these markers in several Chinese cabbage cultivars. Our BBRAF cDNA resource will be publicly available from the RIKEN Bioresource Center and will help researchers to transfer Arabidopsis-related knowledge to Brassica crops.


Plant and Cell Physiology | 2014

SABRE2: A Database Connecting Plant EST/Full-Length cDNA Clones with Arabidopsis Information

Kaoru Fukami-Kobayashi; Yasukazu Nakamura; Takuro Tamura; Masatomo Kobayashi

The SABRE (Systematic consolidation of Arabidopsis and other Botanical REsources) database cross-searches plant genetic resources through publicly available Arabidopsis information. In SABRE, plant expressed sequence tag (EST)/cDNA clones are related to TAIR (The Arabidoposis Information Resource) gene models and their annotations through sequence similarity. By entering a keyword, SABRE searches and retrieves TAIR gene models and annotations, together with homologous gene clones from various plant species. SABRE thus facilitates using TAIR annotations of Arabidopsis genes for research on homologous genes from other model plants. To expand the application range of SABRE to crop breeding, we have recently upgraded SABRE to SABRE2 (http://sabre.epd.brc.riken.jp/SABRE2.html), by newly adding six model plants (including the major crops barley, soybean, tomato and wheat), and by improving the retrieval interface. The present version has integrated information on >1.5 million plant EST/cDNA clones from the National BioResource Project (NBRP) of Japan. All clones are actual experimental resources from 14 plant species (Arabidoposis, barley, cassava, Chinese cabbage, lotus, morning glory, poplar, Physcomitrella patens, Striga hermonthica, soybean, Thellungiella halophila, tobacco, tomato and wheat), and are available from the core facilities of the NBRP. SABRE2 is thus a useful tool that can contribute towards the improvement of important crop breeds by connecting basic research and crop breeding.


Bioscience, Biotechnology, and Biochemistry | 2004

Construction and Characterization of Chimeric Proteins Composed of Type-1 and Type-2 Periplasmic Binding Proteins MglB and ArgT

Kenji Kashiwagi; Kaoru Fukami-Kobayashi; Kiyotaka Shiba; Ken Nishikawa

The respective type-1 and type-2 periplasmic binding proteins (PBPs) MglB and ArgT are believed to have evolved from a common ancestor into siblings showing topological differences in their main chain connectivity. At first glance, they show similar structure. But, more detailed examination reveals that the chain connectivity of ArgT is more convoluted than that of MglB. Reflecting that complexity, the folding of ArgT is complicated and involves intermediate folds. On the other hand, the folding of MglB is a simple two-state transition. In the present study, we constructed and characterized several chimeras made up of various subdomains of MglB and ArgT with the aim of gaining insight into the evolution of protein folding and protein structure. Although these chimeras did not fold as compactly as their parental proteins, some did exhibit cooperative folding, which suggests that novel proteins with new connectivity and new folding pathways could have emerged at a fairly high rate throughout the evolution of proteins.

Collaboration


Dive into the Kaoru Fukami-Kobayashi's collaboration.

Top Co-Authors

Avatar

Yoshio Tateno

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Ken Nishikawa

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar

Hideaki Sugawara

National Institute of Genetics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Satoru Miyazaki

Central Research Institute of Electric Power Industry

View shared research outputs
Top Co-Authors

Avatar

Takashi Gojobori

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenji Kashiwagi

Japanese Foundation for Cancer Research

View shared research outputs
Top Co-Authors

Avatar

Kiyotaka Shiba

Japanese Foundation for Cancer Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge