Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kapil Suchal is active.

Publication


Featured researches published by Kapil Suchal.


European Journal of Pharmacology | 2015

Telmisartan ameliorates cisplatin-induced nephrotoxicity by inhibiting MAPK mediated inflammation and apoptosis

Salma Malik; Kapil Suchal; Nanda Gamad; Amit K. Dinda; Dharamvir Singh Arya; Jagriti Bhatia

Nephrotoxicity is a major adverse effect of the widely used anticancer drug cisplatin. Oxidative stress, inflammation and apoptosis are implicated in the pathophysiology of cisplatin-induced acute renal injury. Moreover, cisplatin activates many signal transduction pathways involved in cell injury and death, particularly mitogen activated protein kinase (MAPK) pathway. With this background, we aimed to investigate the protective effect of telmisartan, a widely used antihypertensive drug, in cisplatin-induced nephrotoxicity model in rats. To accomplish this, male albino wistar rats (150-200 g) were divided into 6 groups: Normal, cisplatin-control, telmisartan (2.5, 5 and 10 mg/kg) and telmisartan per se treatment groups. Normal saline or telmisartan was administered orally to rats for 10 days and cisplatin was given on 7th day (8 mg/kg; i.p.) to induce nephrotoxicity. On 10th day, rats were killed and both the kidneys were harvested for biochemical, histopathological and molecular studies. Cisplatin injected rats showed depressed renal function, altered proxidant-antioxidant balance and acute tubular necrosis which was significantly normalized by telmisartan co-treatment. Furthermore, cisplatin administration activated MAPK pathway that caused tubular inflammation and apoptosis in rats. Telmisartan treatment significantly prevented MAPK mediated inflammation and apoptosis. Among the three doses studied telmisartan at 10 mg/kg dose showed maximum nephroprotective effect which could be due to maintenance of cellular redox status and inhibition of MAPK activation.


Frontiers in Pharmacology | 2016

Seabuckthorn Pulp Oil Protects against Myocardial Ischemia–Reperfusion Injury in Rats through Activation of Akt/eNOS

Kapil Suchal; Jagriti Bhatia; Salma Malik; Rajiv Kumar Malhotra; Nanda Gamad; Sameer N. Goyal; Tapas Chandra Nag; Dharamvir Singh Arya; Shreesh Ojha

Seabuckthorn (SBT) pulp oil obtained from the fruits of seabuckthorn [Hippophae rhamnoides L. (Elaeagnaceae)] has been used traditionally for its medicinal and nutritional properties. However, its role in ischemia–reperfusion (IR) injury of myocardium in rats has not been elucidated so far. The present study reports the cardioprotective effect of SBT pulp oil in IR-induced model of myocardial infarction in rats and underlying mechanism mediating activation of Akt/eNOS signaling pathway. Male albino Wistar rats were orally administered SBT pulp oil (5, 10, and 20 ml/kg/day) or saline for 30 days. On the day 31, ischemia was induced by one-stage ligation of left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. SBT pulp oil pretreatment at the dose of 20 ml/kg observed to stabilize cardiac function and myocardial antioxidants such as glutathione, superoxide dismutase, catalase, and inhibited lipid peroxidation evidenced by reduced malondialdehyde levels as compared to IR-control group. SBT pulp oil also improved hemodynamic and contractile function and decreased tumor necrosis factor and activities of myocyte injury marker enzymes; lactate dehydrogenase and creatine kinase-MB. Additionally, a remarkable rise in expression of pAkt–eNOS, Bcl-2 and decline in expression of IKKβ/NF-κB and Bax was observed in the myocardium. The histopathological and ultrastructural salvage of cardiomyocytes further supports the cardioprotective effect of SBT pulp oil. Based on findings, it can be concluded that SBT pulp oil protects against myocardial IR injury mediating favorable modulation of Akt-eNOS and IKKβ/NF-κB expression.


Oxidative Medicine and Cellular Longevity | 2016

Kaempferol Attenuates Myocardial Ischemic Injury via Inhibition of MAPK Signaling Pathway in Experimental Model of Myocardial Ischemia-Reperfusion Injury.

Kapil Suchal; Salma Malik; Nanda Gamad; Rajiv Kumar Malhotra; Sameer N. Goyal; Uma Chaudhary; Jagriti Bhatia; Shreesh Ojha; Dharamvir Singh Arya

Kaempferol (KMP), a dietary flavonoid, has antioxidant, anti-inflammatory, and antiapoptotic effects. Hence, we investigated the effect of KMP in ischemia-reperfusion (IR) model of myocardial injury in rats. We studied male albino Wistar rats that were divided into sham, IR-control, KMP-20 + IR, and KMP 20 per se groups. KMP (20 mg/kg; i.p.) was administered daily to rats for the period of 15 days, and, on the 15th day, ischemia was produced by one-stage ligation of left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. After completion of surgery, rats were sacrificed; heart was removed and processed for biochemical, morphological, and molecular studies. KMP pretreatment significantly ameliorated IR injury by maintaining cardiac function, normalizing oxidative stress, and preserving morphological alterations. Furthermore, there was a decrease in the level of inflammatory markers (TNF-α, IL-6, and NFκB), inhibition of active JNK and p38 proteins, and activation of ERK1/ERK2, a prosurvival kinase. Additionally, it also attenuated apoptosis by reducing the expression of proapoptotic proteins (Bax and Caspase-3), TUNEL positive cells, and increased level of antiapoptotic proteins (Bcl-2). In conclusion, KMP protected against IR injury by attenuating inflammation and apoptosis through the modulation of MAPK pathway.


Experimental and Toxicologic Pathology | 2015

Nobiletin ameliorates cisplatin-induced acute kidney injury due to its anti-oxidant, anti-inflammatory and anti-apoptotic effects.

Salma Malik; Jagriti Bhatia; Kapil Suchal; Nanda Gamad; Amit K. Dinda; Y. K. Gupta; Dharamvir Singh Arya

Cisplatin is an effective anti-cancer drug which causes remarkable toxicity to kidney by generating reactive oxygen species and by stimulating inflammatory and apoptotic pathway. Citrus flavonoid, like nobiletin has been reported to possess anti-oxidant, anti-inflammatory and anti-apoptotic properties. Hence, the present study was aimed to evaluate these properties of nobiletin, a polymethoxy flavone in cisplatin-induced acute renal injury. Adult male albino Wistar rats were divided into 6 groups. Nobiletin was administered at the dose of 1.25, 2.5 and 5mg/kg for a period of 10 days. On 7th day, a single injection of cisplatin (8 mg/kg) was injected to rats. Cisplatin administration resulted in renal dysfunction as evident by increase in serum creatinine and BUN levels. Oxidative stress in cisplatin group was reflected by increase in MDA level, and depletion of anti-oxidants such as glutathione, superoxide dismutase and catalase in renal tissue. Furthermore, cisplatin increased the expressions of Bax, caspase-3 and DNA damage along with decreased expression of Bcl-2 in the renal tissue. Histological analysis also revealed acute tubular necrosis. However, pretreatment with nobiletin preserved renal function and restored anti-oxidant status. Nobiletin supplementation inhibited activation of apoptotic pathways and DNA damage. It also attenuated tubular injury histologically. Collectively, the result of this study suggests the nephroprotective potential of nobiletin which may be related to its anti-oxidant, anti-apoptotic and anti-inflammatory effects.


Scientific Reports | 2017

Protective effect of mangiferin on myocardial ischemia-reperfusion injury in streptozotocin-induced diabetic rats: role of AGE-RAGE/MAPK pathways

Kapil Suchal; Salma Malik; Sana Irfan Khan; Rajiv Malhotra; Sameer N. Goyal; Jagriti Bhatia; Santosh Kumari; Shreesh Ojha; Dharamvir Singh Arya

Hyperglycemia induced advanced glycation end products-receptor for advanced glycation end products (AGE-RAGE) activation is thought to involve in the development of cardiovascular disease in diabetics. Activation of AGE-RAGE axis results in the oxidative stress and inflammation. Mangiferin is found in the bark of mango tree and is known to treat diseases owing to its various biological activities. Thus, this study was designed to evaluate the effect of mangiferin in ischemia-reperfusion (IR) induced myocardial injury in diabetic rats. A single injection of STZ (70 mg/kg; i.p.) was injected to male albino Wistar rats to induce diabetes. After confirmation of diabetes, rats were administered vehicle (2 ml/kg; i.p.) and mangiferin (40 mg/kg; i.p.) for 28 days. On 28th day, left anterior descending coronary artery was ligated for 45 min and then reperfused for 60 min. Mangiferin treatment significantly improved cardiac function, restored antioxidant status, reduced inflammation, apoptosis and maintained myocardial architecture. Furthermore, mangiferin significantly inhibited the activation of AGE-RAGE axis, c-Jun N-terminal kinase (JNK) and p38 and increased the expression of extracellular regulated kinase 1/2 (ERK1/2) in the myocardium. Thus, mangiferin attenuated IR injury in diabetic rats by modulation of AGE-RAGE/MAPK pathways which further prevented oxidative stress, inflammation and apoptosis in the myocardium.


International Journal of Molecular Sciences | 2017

Molecular Pathways Involved in the Amelioration of Myocardial Injury in Diabetic Rats by Kaempferol

Kapil Suchal; Salma Malik; Sana Irfan Khan; Rajiv Kumar Malhotra; Sameer N. Goyal; Jagriti Bhatia; Shreesh Ojha; Dharamvir Singh Arya

There is growing evidence that chronic hyperglycemia leads to the formation of advanced glycation end products (AGEs) which exerts its effect via interaction with the receptor for advanced glycation end products (RAGE). AGE-RAGE activation results in oxidative stress and inflammation. It is well known that this mechanism is involved in the pathogenesis of cardiovascular disease in diabetes. Kaempferol, a dietary flavonoid, is known to possess antioxidant, anti-apoptotic, and anti-inflammatory activities. However, little is known about the effect of kaempferol on myocardial ischemia-reperfusion (IR) injury in diabetic rats. Diabetes was induced in male albino Wistar rats using streptozotocin (70 mg/kg; i.p.), and rats with glucose level >250 mg/dL were considered as diabetic. Diabetic rats were treated with vehicle (2 mL/kg; i.p.) and kaempferol (20 mg/kg; i.p.) daily for a period of 28 days and on the 28th day, ischemia was produced by one-stage ligation of the left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. After completion of surgery, rats were sacrificed and the heart tissue was processed for biochemical, morphological, and molecular studies. Kaempferol pretreatment significantly reduced hyperglycemia, maintained hemodynamic function, suppressed AGE-RAGE axis activation, normalized oxidative stress, and preserved morphological alterations. In addition, there was decreased level of inflammatory markers (tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and NF-κB), inhibition of active c-Jun N-terminal kinase (JNK) and p38 proteins, and activation of Extracellular signal regulated kinase 1/2 (ERK1/2) a prosurvival kinase. Furthermore, it also attenuated apoptosis by reducing the expression of pro-apoptotic proteins (Bax and Caspase-3), Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) positive cells, and increasing the level of anti-apoptotic protein (Bcl-2). In conclusion, kaempferol attenuated myocardial ischemia-reperfusion injury in diabetic rats by reducing AGE-RAGE/ mitogen activated protein kinase (MAPK) induced oxidative stress and inflammation.


European Journal of Pharmacology | 2016

Mangiferin protect myocardial insults through modulation of MAPK/TGF-β pathways.

Kapil Suchal; Salma Malik; Nanda Gamad; Rajiv Kumar Malhotra; Sameer N. Goyal; Shreesh Ojha; Santosh Kumari; Jagriti Bhatia; Dharamvir Singh Arya

Mangiferin, a xanthone glycoside isolated from leaves of Mangifera indica (Anacardiaceae) is known to modulate many biological targets in inflammation and oxidative stress. The present study was designed to investigate whether mangiferin exerts protection against myocardial ischemia-reperfusion (IR) injury and possible role of Mitogen Activated Protein Kinase (MAPKs) and Transforming Growth Factor-β (TGF-β) pathways in its cardioprotection. Male albino Wistar rats were treated with mangiferin (40 mg/kg, i.p.) for 15 days. At the end of the treatment protocol, rats were subjected to IR injury consisting of 45 min ischemia followed by 1h reperfusion. IR-control rats caused significant cardiac dysfunction, increased serum cardiac injury markers, lipid peroxidation and a significant decrease in tissue antioxidants as compared to sham group. Histopathological examination of IR rats revealed myocardial necrosis, edema and infiltration of inflammatory cells. However, pretreatment with mangiferin significantly restored myocardial oxidant-antioxidant status, maintained membrane integrity, and attenuated the levels of proinflammatory cytokines, pro-apoptotic proteins and TGF-β. Furthermore, mangiferin significantly reduced the phosphorylation of p38, and JNK and enhanced phosphorylation of ERK1/2. These results suggest that mangiferin protects against myocardial IR injury by modulating MAPK mediated inflammation and apoptosis.


International Journal of Molecular Sciences | 2017

The Protective Effect of Apigenin on Myocardial Injury in Diabetic Rats mediating Activation of the PPAR-γ Pathway

Umesh B. Mahajan; Govind Chandrayan; Chandragouda R. Patil; Dharamvir Singh Arya; Kapil Suchal; Yogeeta O. Agrawal; Shreesh Ojha; Sameer N. Goyal

We substantiated the role of peroxisome proliferator-activated receptor-γ (PPAR-γ) activation in the protective effect of apigenin against the myocardial infarction (MI) in diabetic rats. Diabetes was induced by intraperitoneal administration of a single dose of streptozotocin (55 mg/kg). The study groups included diabetic rats receiving vehicle, apigenin (75 mg/kg/day, orally), GW9662 (1 mg/kg/day, intraperitoneally), and a combination of apigenin and GW9662 for 14 days. The MI was induced in all the study groups except the diabetic control group by subcutaneous injection of 100 mg/kg/day of isoproterenol on the two terminal days. The diabetes and isoproterenol-induced MI was evident as a reduction in the maximal positive and negative rate of developed left ventricular pressure and an increase in the left ventricular end-diastolic pressure. The activities of creatine kinase on myocardial bundle (CK-MB) and lactate dehydrogenase (LDH) were also reduced. Apigenin treatment prevented the hemodynamic perturbations, restored the left ventricular function and reinstated a balanced redox status. It protected rats against an MI by attenuating myonecrosis, edema, cell death, and oxidative stress. GW9662, a PPAR-γ antagonist reversed the myocardial protection conferred by apigenin. Further, an increase in the PPAR-γ expression in the myocardium of the rats receiving apigenin reinforces the role of PPAR-γ pathway activation in the cardioprotective effects of apigenin.


Phytomedicine | 2016

Kampeferol protects against oxidative stress and apoptotic damage in experimental model of isoproterenol-induced cardiac toxicity in rats.

Kapil Suchal; Salma Malik; Nanda Gamad; Rajiv Kumar Malhotra; Sameer N. Goyal; Jagriti Bhatia; Dharamvir Singh Arya

BACKGROUND Myocardial infarction (MI) continues to be associated with high morbidity and mortality worldwide despite the availability of current therapeutic modalities. Kaempferol (KMP), a dietary flavonoid, possesses good antioxidant, immunomodulatory and anti-apoptotic properties and has been evaluated in the present study for its role in mitigating myocardial injury following MI. PURPOSE In this study, the ability of KMP to protect heart against isoproterenol (ISO) induced oxidative stress and myocardial infarction was evaluated. MATERIAL AND METHODS Male Wistar rats (n=48) were administered KMP (5, 10 & 20mg/kg/day, i.p.) or vehicle for 15 days with ISO, 85mg/kg, subcutaneously, for 2 consecutive days was also administered at 24h interval on the 13th and 14th days. On the 15th day, rats were anaesthetized and right coronary artery was cannulated to record hemodynamic parameters. Later on blood sample was collected and heart was removed to estimate biochemical, histopathological, ultrastructural and immuohistochemical studies respectively. RESULTS ISO-treated rats showed a significant reduction in arterial pressure, maximum rate of development of left ventricular pressure and increase in left ventricular end-diastolic pressure. Also, there was a significant decrease in antioxidant enzyme levels such as superoxide dismutase, catalase and glutathione and increase in the level of malondialdehyde and serum TNF-α and IL-6 levels. In addition, the cardiac injury markers such as creatine kinase-MB and lactate dehydrogenase were increased in the serum. Furthermore, immunohistochemistry revealed an increased Bax/Bcl-2 ratio in the myocardium. KMP (5, 10 and 20mg/kg) dose dependently restored hemodynamic, left ventricular functions, decreased cardiac injury marker enzymes in serum, increased antioxidant levels, reduced lipid peroxidation and TNF-α level and apoptosis. Histopathological and ultrastructural studies support the protective effect of KMP in ISO-induced myocardial infarcted rats. CONCLUSION Thus, the present study revealed that KMP mitigates myocardial damage in ISO-induced cardiac injury by maintaining hemodynamic and biochemical parameters and reducing inflammation owing to its anti-apoptotic, anti-inflammatory and antioxidant activities. It may be concluded that a diet containing KMP may be beneficial in those who are at the risk of myocardial injury.


American Journal of Physiology-renal Physiology | 2017

Apigenin ameliorates streptozotocin-induced diabetic nephropathy in rats via MAPK-NF-κB-TNF-α and TGF-β1-MAPK-fibronectin pathways

Salma Malik; Kapil Suchal; Sana Irfan Khan; Jagriti Bhatia; Kamal Kishore; Amit Kumar Dinda; Dharamvir Singh Arya

Diabetic nephropathy (DN), a microvascular complication of diabetes, has emerged as an important health problem worldwide. There is strong evidence to suggest that oxidative stress, inflammation, and fibrosis play a pivotal role in the progression of DN. Apigenin has been shown to possess antioxidant, anti-inflammatory, antiapoptotic, antifibrotic, as well as antidiabetic properties. Hence, we evaluated whether apigenin halts the development and progression of DN in streptozotocin (STZ)-induced diabetic rats. Male albino Wistar rats were divided into control, diabetic control, and apigenin treatment groups (5-20 mg/kg po, respectively), apigenin per se (20 mg/kg po), and ramipril treatment group (2 mg/kg po). A single injection of STZ (55 mg/kg ip) was administered to all of the groups except control and per se groups to induce type 1 diabetes mellitus. Rats with fasting blood glucose >250 mg/dl were included in the study and randomized to different groups. Thereafter, the protocol was continued for 8 mo in all of the groups. Apigenin (20 mg/kg) treatment attenuated renal dysfunction, oxidative stress, and fibrosis (decreased transforming growth factor-β1, fibronectin, and type IV collagen) in the diabetic rats. It also significantly prevented MAPK activation, which inhibited inflammation (reduced TNF-α, IL-6, and NF-κB expression) and apoptosis (increased expression of Bcl-2 and decreased Bax and caspase-3). Furthermore, histopathological examination demonstrated reduced inflammation, collagen deposition, and glomerulosclerosis in the renal tissue. In addition, all of these changes were comparable with those produced by ramipril. Hence, apigenin ameliorated renal damage due to DN by suppressing oxidative stress and fibrosis and by inhibiting MAPK pathway.

Collaboration


Dive into the Kapil Suchal's collaboration.

Top Co-Authors

Avatar

Salma Malik

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Jagriti Bhatia

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Dharamvir Singh Arya

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Nanda Gamad

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Sameer N. Goyal

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Shreesh Ojha

United Arab Emirates University

View shared research outputs
Top Co-Authors

Avatar

Rajiv Kumar Malhotra

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Amit K. Dinda

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Dharamveer Singh Arya

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Sana Irfan Khan

All India Institute of Medical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge