Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nanda Gamad is active.

Publication


Featured researches published by Nanda Gamad.


European Journal of Pharmacology | 2015

Telmisartan ameliorates cisplatin-induced nephrotoxicity by inhibiting MAPK mediated inflammation and apoptosis

Salma Malik; Kapil Suchal; Nanda Gamad; Amit K. Dinda; Dharamvir Singh Arya; Jagriti Bhatia

Nephrotoxicity is a major adverse effect of the widely used anticancer drug cisplatin. Oxidative stress, inflammation and apoptosis are implicated in the pathophysiology of cisplatin-induced acute renal injury. Moreover, cisplatin activates many signal transduction pathways involved in cell injury and death, particularly mitogen activated protein kinase (MAPK) pathway. With this background, we aimed to investigate the protective effect of telmisartan, a widely used antihypertensive drug, in cisplatin-induced nephrotoxicity model in rats. To accomplish this, male albino wistar rats (150-200 g) were divided into 6 groups: Normal, cisplatin-control, telmisartan (2.5, 5 and 10 mg/kg) and telmisartan per se treatment groups. Normal saline or telmisartan was administered orally to rats for 10 days and cisplatin was given on 7th day (8 mg/kg; i.p.) to induce nephrotoxicity. On 10th day, rats were killed and both the kidneys were harvested for biochemical, histopathological and molecular studies. Cisplatin injected rats showed depressed renal function, altered proxidant-antioxidant balance and acute tubular necrosis which was significantly normalized by telmisartan co-treatment. Furthermore, cisplatin administration activated MAPK pathway that caused tubular inflammation and apoptosis in rats. Telmisartan treatment significantly prevented MAPK mediated inflammation and apoptosis. Among the three doses studied telmisartan at 10 mg/kg dose showed maximum nephroprotective effect which could be due to maintenance of cellular redox status and inhibition of MAPK activation.


Frontiers in Pharmacology | 2016

Seabuckthorn Pulp Oil Protects against Myocardial Ischemia–Reperfusion Injury in Rats through Activation of Akt/eNOS

Kapil Suchal; Jagriti Bhatia; Salma Malik; Rajiv Kumar Malhotra; Nanda Gamad; Sameer N. Goyal; Tapas Chandra Nag; Dharamvir Singh Arya; Shreesh Ojha

Seabuckthorn (SBT) pulp oil obtained from the fruits of seabuckthorn [Hippophae rhamnoides L. (Elaeagnaceae)] has been used traditionally for its medicinal and nutritional properties. However, its role in ischemia–reperfusion (IR) injury of myocardium in rats has not been elucidated so far. The present study reports the cardioprotective effect of SBT pulp oil in IR-induced model of myocardial infarction in rats and underlying mechanism mediating activation of Akt/eNOS signaling pathway. Male albino Wistar rats were orally administered SBT pulp oil (5, 10, and 20 ml/kg/day) or saline for 30 days. On the day 31, ischemia was induced by one-stage ligation of left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. SBT pulp oil pretreatment at the dose of 20 ml/kg observed to stabilize cardiac function and myocardial antioxidants such as glutathione, superoxide dismutase, catalase, and inhibited lipid peroxidation evidenced by reduced malondialdehyde levels as compared to IR-control group. SBT pulp oil also improved hemodynamic and contractile function and decreased tumor necrosis factor and activities of myocyte injury marker enzymes; lactate dehydrogenase and creatine kinase-MB. Additionally, a remarkable rise in expression of pAkt–eNOS, Bcl-2 and decline in expression of IKKβ/NF-κB and Bax was observed in the myocardium. The histopathological and ultrastructural salvage of cardiomyocytes further supports the cardioprotective effect of SBT pulp oil. Based on findings, it can be concluded that SBT pulp oil protects against myocardial IR injury mediating favorable modulation of Akt-eNOS and IKKβ/NF-κB expression.


Oxidative Medicine and Cellular Longevity | 2016

Kaempferol Attenuates Myocardial Ischemic Injury via Inhibition of MAPK Signaling Pathway in Experimental Model of Myocardial Ischemia-Reperfusion Injury.

Kapil Suchal; Salma Malik; Nanda Gamad; Rajiv Kumar Malhotra; Sameer N. Goyal; Uma Chaudhary; Jagriti Bhatia; Shreesh Ojha; Dharamvir Singh Arya

Kaempferol (KMP), a dietary flavonoid, has antioxidant, anti-inflammatory, and antiapoptotic effects. Hence, we investigated the effect of KMP in ischemia-reperfusion (IR) model of myocardial injury in rats. We studied male albino Wistar rats that were divided into sham, IR-control, KMP-20 + IR, and KMP 20 per se groups. KMP (20 mg/kg; i.p.) was administered daily to rats for the period of 15 days, and, on the 15th day, ischemia was produced by one-stage ligation of left anterior descending coronary artery for 45 min followed by reperfusion for 60 min. After completion of surgery, rats were sacrificed; heart was removed and processed for biochemical, morphological, and molecular studies. KMP pretreatment significantly ameliorated IR injury by maintaining cardiac function, normalizing oxidative stress, and preserving morphological alterations. Furthermore, there was a decrease in the level of inflammatory markers (TNF-α, IL-6, and NFκB), inhibition of active JNK and p38 proteins, and activation of ERK1/ERK2, a prosurvival kinase. Additionally, it also attenuated apoptosis by reducing the expression of proapoptotic proteins (Bax and Caspase-3), TUNEL positive cells, and increased level of antiapoptotic proteins (Bcl-2). In conclusion, KMP protected against IR injury by attenuating inflammation and apoptosis through the modulation of MAPK pathway.


Experimental and Toxicologic Pathology | 2015

Nobiletin ameliorates cisplatin-induced acute kidney injury due to its anti-oxidant, anti-inflammatory and anti-apoptotic effects.

Salma Malik; Jagriti Bhatia; Kapil Suchal; Nanda Gamad; Amit K. Dinda; Y. K. Gupta; Dharamvir Singh Arya

Cisplatin is an effective anti-cancer drug which causes remarkable toxicity to kidney by generating reactive oxygen species and by stimulating inflammatory and apoptotic pathway. Citrus flavonoid, like nobiletin has been reported to possess anti-oxidant, anti-inflammatory and anti-apoptotic properties. Hence, the present study was aimed to evaluate these properties of nobiletin, a polymethoxy flavone in cisplatin-induced acute renal injury. Adult male albino Wistar rats were divided into 6 groups. Nobiletin was administered at the dose of 1.25, 2.5 and 5mg/kg for a period of 10 days. On 7th day, a single injection of cisplatin (8 mg/kg) was injected to rats. Cisplatin administration resulted in renal dysfunction as evident by increase in serum creatinine and BUN levels. Oxidative stress in cisplatin group was reflected by increase in MDA level, and depletion of anti-oxidants such as glutathione, superoxide dismutase and catalase in renal tissue. Furthermore, cisplatin increased the expressions of Bax, caspase-3 and DNA damage along with decreased expression of Bcl-2 in the renal tissue. Histological analysis also revealed acute tubular necrosis. However, pretreatment with nobiletin preserved renal function and restored anti-oxidant status. Nobiletin supplementation inhibited activation of apoptotic pathways and DNA damage. It also attenuated tubular injury histologically. Collectively, the result of this study suggests the nephroprotective potential of nobiletin which may be related to its anti-oxidant, anti-apoptotic and anti-inflammatory effects.


European Journal of Pharmacology | 2016

Mangiferin protect myocardial insults through modulation of MAPK/TGF-β pathways.

Kapil Suchal; Salma Malik; Nanda Gamad; Rajiv Kumar Malhotra; Sameer N. Goyal; Shreesh Ojha; Santosh Kumari; Jagriti Bhatia; Dharamvir Singh Arya

Mangiferin, a xanthone glycoside isolated from leaves of Mangifera indica (Anacardiaceae) is known to modulate many biological targets in inflammation and oxidative stress. The present study was designed to investigate whether mangiferin exerts protection against myocardial ischemia-reperfusion (IR) injury and possible role of Mitogen Activated Protein Kinase (MAPKs) and Transforming Growth Factor-β (TGF-β) pathways in its cardioprotection. Male albino Wistar rats were treated with mangiferin (40 mg/kg, i.p.) for 15 days. At the end of the treatment protocol, rats were subjected to IR injury consisting of 45 min ischemia followed by 1h reperfusion. IR-control rats caused significant cardiac dysfunction, increased serum cardiac injury markers, lipid peroxidation and a significant decrease in tissue antioxidants as compared to sham group. Histopathological examination of IR rats revealed myocardial necrosis, edema and infiltration of inflammatory cells. However, pretreatment with mangiferin significantly restored myocardial oxidant-antioxidant status, maintained membrane integrity, and attenuated the levels of proinflammatory cytokines, pro-apoptotic proteins and TGF-β. Furthermore, mangiferin significantly reduced the phosphorylation of p38, and JNK and enhanced phosphorylation of ERK1/2. These results suggest that mangiferin protects against myocardial IR injury by modulating MAPK mediated inflammation and apoptosis.


Phytomedicine | 2016

Kampeferol protects against oxidative stress and apoptotic damage in experimental model of isoproterenol-induced cardiac toxicity in rats.

Kapil Suchal; Salma Malik; Nanda Gamad; Rajiv Kumar Malhotra; Sameer N. Goyal; Jagriti Bhatia; Dharamvir Singh Arya

BACKGROUND Myocardial infarction (MI) continues to be associated with high morbidity and mortality worldwide despite the availability of current therapeutic modalities. Kaempferol (KMP), a dietary flavonoid, possesses good antioxidant, immunomodulatory and anti-apoptotic properties and has been evaluated in the present study for its role in mitigating myocardial injury following MI. PURPOSE In this study, the ability of KMP to protect heart against isoproterenol (ISO) induced oxidative stress and myocardial infarction was evaluated. MATERIAL AND METHODS Male Wistar rats (n=48) were administered KMP (5, 10 & 20mg/kg/day, i.p.) or vehicle for 15 days with ISO, 85mg/kg, subcutaneously, for 2 consecutive days was also administered at 24h interval on the 13th and 14th days. On the 15th day, rats were anaesthetized and right coronary artery was cannulated to record hemodynamic parameters. Later on blood sample was collected and heart was removed to estimate biochemical, histopathological, ultrastructural and immuohistochemical studies respectively. RESULTS ISO-treated rats showed a significant reduction in arterial pressure, maximum rate of development of left ventricular pressure and increase in left ventricular end-diastolic pressure. Also, there was a significant decrease in antioxidant enzyme levels such as superoxide dismutase, catalase and glutathione and increase in the level of malondialdehyde and serum TNF-α and IL-6 levels. In addition, the cardiac injury markers such as creatine kinase-MB and lactate dehydrogenase were increased in the serum. Furthermore, immunohistochemistry revealed an increased Bax/Bcl-2 ratio in the myocardium. KMP (5, 10 and 20mg/kg) dose dependently restored hemodynamic, left ventricular functions, decreased cardiac injury marker enzymes in serum, increased antioxidant levels, reduced lipid peroxidation and TNF-α level and apoptosis. Histopathological and ultrastructural studies support the protective effect of KMP in ISO-induced myocardial infarcted rats. CONCLUSION Thus, the present study revealed that KMP mitigates myocardial damage in ISO-induced cardiac injury by maintaining hemodynamic and biochemical parameters and reducing inflammation owing to its anti-apoptotic, anti-inflammatory and antioxidant activities. It may be concluded that a diet containing KMP may be beneficial in those who are at the risk of myocardial injury.


World Journal of Diabetes | 2014

Canagliflozin-current status in the treatment of type 2 diabetes mellitus with focus on clinical trial data

Jagriti Bhatia; Nanda Gamad; Saurabh Bharti; Dharamvir Singh Arya

Canagliflozin (CFZ) is a member of new class of glucose lowering agents, sodium-glucose co-transporter (SGLT) inhibitors, which got approval by food and drug administration. It has insulin independent action by blocking the transporter protein SGLT2 in the kidneys, resulting in urinary glucose excretion and reduction in blood glucose levels. In clinical trials, CFZ significantly decreased HbA1c level when administered either as monotherapy or as combined therapy with other anti-diabetic drugs. Intriguingly, it showed additional benefits like weight reduction and lowering of blood pressure. The commonly observed side effects were urinary and genital infections. It has exhibited favorable pharmacokinetic and pharmacodynamic profiles even in patients with renal and hepatic damage. Hence, this review purports to outline CFZ as a newer beneficial drug for type 2 diabetes mellitus.


Laboratory Investigation | 2016

Molecular mechanisms underlying attenuation of cisplatin-induced acute kidney injury by epicatechin gallate

Salma Malik; Kapil Suchal; Jagriti Bhatia; Nanda Gamad; Amit K. Dinda; Yogendra Kumar Gupta; Dharamvir Singh Arya

Cisplatin, a platinum compound, is used as a first-line agent against various forms of solid cancers. Nephrotoxicity is an important adverse effect of cisplatin therapy, which involves increased oxidative stress, inflammation, apoptosis, and activation of the mitogen-activated protein kinase (MAPK) pathway. It is well known that the bioactive compounds present in green tea are used to treat various disorders due to their biological activities. With this background, the present study was aimed to investigate the effect of epicatechin gallate (ECG), a green tea polyphenol, in cisplatin-induced nephrotoxicity in rats. To achieve this, ECG (1.25, 2.5, and 5 mg/kg; intraperitoneal (i.p.)) was administered to male albino Wistar rats for the period of 10 days. On the 7th day, a single i.p. injection of cisplatin (8 mg/kg) was injected into rats to produce kidney injury and the animals were then killed on the 10th day. Cisplatin toxicity was associated with enhanced oxidative stress, impaired renal function along with marked tubular necrosis in Histopathology. Furthermore, cisplatin activated the MAPK pathway, which contributed to inflammation and apoptosis in the kidney of treated rats. In contrast, ECG (5 mg/kg) pretreatment normalized cisplatin-induced oxidative stress, renal function, and histopathological changes. ECG also prevented the activation of the MAPK pathway, and attenuated inflammation and apoptosis in rats. These findings suggest that ECG prevented cisplatin-induced oxidative stress, inflammation, and apoptosis by downregulating the MAPK pathway and resulted in improved renal function.


Biomedicine & Pharmacotherapy | 2018

Metformin alleviates bleomycin-induced pulmonary fibrosis in rats: Pharmacological effects and molecular mechanisms

Nanda Gamad; Salma Malik; Kapil Suchal; Swati Vasisht; Ameesha Tomar; Sudheer Arava; Dharamvir Singh Arya; Jagriti Bhatia

BACKGROUND Metformin, a commonly used oral antidiabetic agent, is known to possess pleiotropic antioxidant, anti-inflammatory and anti-fibrotic effects. In this study, we evaluated the effect of metformin on pulmonary fibrosis and the mechanism underlying its effect. METHODS Pulmonary fibrosis was induced experimentally with bleomycin (0.035 U/g, i.p.) given twice weekly for four weeks. Metformin (125, 250 and 500 mg/kg/day, p.o) was given seven days prior to first injection of bleomycin and continued till 28 days after starting bleomycin injection. Prednisolone (5 mg/kg/day, p.o) was the standard control. RESULTS Administration of bleomycin caused pulmonary fibrosis in rats as evidenced by characteristic structural changes in histopathology, increased inflammatory cells in bronchoalveolar lavage fluid, elevated lipid peroxidation marker, depleted endogenous antioxidants and increased inflammatory mediators (TNF-α, IL-6). There were also increased levels of TGF-β, Smad2/3, ERK1/2, p38, JNK, fibronectin, hydroxyproline and type I collagen in bleomycin-control group. All these changes were ameliorated by high dose metformin. It restored structural, biochemical and molecular changes towards normal. This protective effect may be attributed to activation of AMPK by metformin, with consequent reduction in oxidative stress and TGF-β. Moreover, this protective effect was superior to prednisolone as metformin had additional antioxidant and antifibrotic properties. CONCLUSION These data suggest that metformin protects against bleomycin-induced pulmonary fibrosis through activation of AMPK and amelioration of TGF-β signaling pathways.


Journal of the International Society of Antioxidants in Nutrition & Health | 2016

MANGIFERIN PROTECTS HEART FROM ISOPROTERENOL-INDUCED MYOCARDIAL NECROSIS IN RATS

Kapil Suchal; Salma Malik; Nanda Gamad; Rajiv Kumar Malhotra; Jagriti Bhatia; Dharamvir Singh Arya

Collaboration


Dive into the Nanda Gamad's collaboration.

Top Co-Authors

Avatar

Jagriti Bhatia

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Dharamvir Singh Arya

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Kapil Suchal

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Salma Malik

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Rajiv Kumar Malhotra

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Amit K. Dinda

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Sameer N. Goyal

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Shreesh Ojha

United Arab Emirates University

View shared research outputs
Top Co-Authors

Avatar

Ameesha Tomar

All India Institute of Medical Sciences

View shared research outputs
Top Co-Authors

Avatar

Dharamveer Singh Arya

All India Institute of Medical Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge