Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kara Dolinski is active.

Publication


Featured researches published by Kara Dolinski.


Nature Genetics | 2000

Gene ontology: tool for the unification of biology. The Gene Ontology Consortium.

Michael Ashburner; Catherine A. Ball; Judith A. Blake; David Botstein; Heather L. Butler; J. Michael Cherry; Allan Peter Davis; Kara Dolinski; Selina S. Dwight; Janan T. Eppig; Midori A. Harris; David P. Hill; Laurie Issel-Tarver; Andrew Kasarskis; Suzanna E. Lewis; John C. Matese; Joel E. Richardson; Martin Ringwald; Gerald M. Rubin; Gavin Sherlock

Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.


Nucleic Acids Research | 2004

The Gene Ontology (GO) database and informatics resource.

Midori A. Harris; Jennifer I. Clark; Amelia Ireland; Jane Lomax; Michael Ashburner; R. Foulger; K. Eilbeck; Suzanna E. Lewis; B. Marshall; Christopher J. Mungall; John Richter; Gerald M. Rubin; Judith A. Blake; Mary E. Dolan; Harold J. Drabkin; Janan T. Eppig; David P. Hill; Li Ni; Martin Ringwald; Rama Balakrishnan; J. M. Cherry; Karen R. Christie; Maria C. Costanzo; Selina S. Dwight; Stacia R. Engel; Dianna G. Fisk; Jodi E. Hirschman; Eurie L. Hong; Robert S. Nash; Anand Sethuraman

The Gene Ontology (GO) project (http://www. geneontology.org/) provides structured, controlled vocabularies and classifications that cover several domains of molecular and cellular biology and are freely available for community use in the annotation of genes, gene products and sequences. Many model organism databases and genome annotation groups use the GO and contribute their annotation sets to the GO resource. The GO database integrates the vocabularies and contributed annotations and provides full access to this information in several formats. Members of the GO Consortium continually work collectively, involving outside experts as needed, to expand and update the GO vocabularies. The GO Web resource also provides access to extensive documentation about the GO project and links to applications that use GO data for functional analyses.


Nucleic Acids Research | 2007

The BioGRID Interaction Database: 2011 update

Chris Stark; Bobby-Joe Breitkreutz; Andrew Chatr-aryamontri; Lorrie Boucher; Rose Oughtred; Michael S. Livstone; Julie Nixon; Kimberly Van Auken; Xiaodong Wang; Xiaoqi Shi; Teresa Reguly; Jennifer M. Rust; Andrew Winter; Kara Dolinski; Mike Tyers

The Biological General Repository for Interaction Datasets (BioGRID) is a public database that archives and disseminates genetic and protein interaction data from model organisms and humans (http://www.thebiogrid.org). BioGRID currently holds 347 966 interactions (170 162 genetic, 177 804 protein) curated from both high-throughput data sets and individual focused studies, as derived from over 23 000 publications in the primary literature. Complete coverage of the entire literature is maintained for budding yeast (Saccharomyces cerevisiae), fission yeast (Schizosaccharomyces pombe) and thale cress (Arabidopsis thaliana), and efforts to expand curation across multiple metazoan species are underway. The BioGRID houses 48 831 human protein interactions that have been curated from 10 247 publications. Current curation drives are focused on particular areas of biology to enable insights into conserved networks and pathways that are relevant to human health. The BioGRID 3.0 web interface contains new search and display features that enable rapid queries across multiple data types and sources. An automated Interaction Management System (IMS) is used to prioritize, coordinate and track curation across international sites and projects. BioGRID provides interaction data to several model organism databases, resources such as Entrez-Gene and other interaction meta-databases. The entire BioGRID 3.0 data collection may be downloaded in multiple file formats, including PSI MI XML. Source code for BioGRID 3.0 is freely available without any restrictions.


Methods in Enzymology | 2002

Saccharomyces Genome Database.

Laurie Issel-Tarver; Karen R. Christie; Kara Dolinski; Rey Andrada; Rama Balakrishnan; Catherine A. Ball; Gail Binkley; Stan Dong; Selina S. Dwight; Dianna G. Fisk; Midori A. Harris; Mark Schroeder; Anand Sethuraman; Kane Tse; Shuai Weng; David Botstein; J. Michael Cherry

Publisher Summary The goal of the Saccharomyces Genome Database (SGD) is to provide information about the genome of this yeast, the genes it encodes, and their biological functions. The genome sequence of S. cerevisiae provides the structure around which information in SGD is organized; value is added to the sequence by careful biological annotation drawn from a number of sources. SGD curates and stores information about budding yeast DNA and protein sequences, genetics, cell biology, and the associated community of researchers. SGD also provides search and analysis tools designed to help researchers mine the data for pieces or patterns of biological information relevant to their interests. A continuing challenge for the staff of SGD is to present up-to-date information about yeast genes in a format that is intuitive and useful to biomedical researchers, while responding to the needs of this community by providing resources and tools for exploring the data in new ways. This chapter describes the organization of SGD, the sources of the data stored in SGD, some methods for retrieving information from the database, connections SGD has with outside databases and non-yeast research communities, and SGDs repository of yeast community information.


Nucleic Acids Research | 2013

The BioGRID interaction database

Andrew Chatr-aryamontri; Bobby-Joe Breitkreutz; Sven Heinicke; Lorrie Boucher; Andrew Winter; Chris Stark; Julie Nixon; Lindsay Ramage; Nadine Kolas; Lara O'Donnell; Teresa Reguly; Ashton Breitkreutz; Adnane Sellam; Daici Chen; Christie S. Chang; Jennifer M. Rust; Michael S. Livstone; Rose Oughtred; Kara Dolinski; Mike Tyers

The Biological General Repository for Interaction Datasets (BioGRID: http//thebiogrid.org) is an open access archive of genetic and protein interactions that are curated from the primary biomedical literature for all major model organism species. As of September 2012, BioGRID houses more than 500 000 manually annotated interactions from more than 30 model organisms. BioGRID maintains complete curation coverage of the literature for the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the model plant Arabidopsis thaliana. A number of themed curation projects in areas of biomedical importance are also supported. BioGRID has established collaborations and/or shares data records for the annotation of interactions and phenotypes with most major model organism databases, including Saccharomyces Genome Database, PomBase, WormBase, FlyBase and The Arabidopsis Information Resource. BioGRID also actively engages with the text-mining community to benchmark and deploy automated tools to expedite curation workflows. BioGRID data are freely accessible through both a user-defined interactive interface and in batch downloads in a wide variety of formats, including PSI-MI2.5 and tab-delimited files. BioGRID records can also be interrogated and analyzed with a series of new bioinformatics tools, which include a post-translational modification viewer, a graphical viewer, a REST service and a Cytoscape plugin.


Proceedings of the National Academy of Sciences of the United States of America | 2003

A Bayesian framework for combining heterogeneous data sources for gene function prediction (in Saccharomyces cerevisiae)

Olga G. Troyanskaya; Kara Dolinski; Art B. Owen; Russ B. Altman; David Botstein

Genomic sequencing is no longer a novelty, but gene function annotation remains a key challenge in modern biology. A variety of functional genomics experimental techniques are available, from classic methods such as affinity precipitation to advanced high-throughput techniques such as gene expression microarrays. In the future, more disparate methods will be developed, further increasing the need for integrated computational analysis of data generated by these studies. We address this problem with magic (Multisource Association of Genes by Integration of Clusters), a general framework that uses formal Bayesian reasoning to integrate heterogeneous types of high-throughput biological data (such as large-scale two-hybrid screens and multiple microarray analyses) for accurate gene function prediction. The system formally incorporates expert knowledge about relative accuracies of data sources to combine them within a normative framework. magic provides a belief level with its output that allows the user to vary the stringency of predictions. We applied magic to Saccharomyces cerevisiae genetic and physical interactions, microarray, and transcription factor binding sites data and assessed the biological relevance of gene groupings using Gene Ontology annotations produced by the Saccaromyces Genome Database. We found that by creating functional groupings based on heterogeneous data types, magic improved accuracy of the groupings compared with microarray analysis alone. We describe several of the biological gene groupings identified.


Nucleic Acids Research | 2008

The Gene Ontology project in 2008

Midori A. Harris; Jennifer I. Deegan; Amelia Ireland; Jane Lomax; Michael Ashburner; Susan Tweedie; Seth Carbon; Suzanna E. Lewis; Christopher J. Mungall; John Richter; Karen Eilbeck; Judith A. Blake; Alexander D. Diehl; Mary E. Dolan; Harold Drabkin; Janan T. Eppig; David P. Hill; Ni Li; Martin Ringwald; Rama Balakrishnan; Gail Binkley; J. Michael Cherry; Karen R. Christie; Maria C. Costanzo; Qing Dong; Stacia R. Engel; Dianna G. Fisk; Jodi E. Hirschman; Benjamin C. Hitz; Eurie L. Hong

The Gene Ontology (GO) project (http://www.geneontology.org/) provides a set of structured, controlled vocabularies for community use in annotating genes, gene products and sequences (also see http://www.sequenceontology.org/). The ontologies have been extended and refined for several biological areas, and improvements to the structure of the ontologies have been implemented. To improve the quantity and quality of gene product annotations available from its public repository, the GO Consortium has launched a focused effort to provide comprehensive and detailed annotation of orthologous genes across a number of ‘reference’ genomes, including human and several key model organisms. Software developments include two releases of the ontology-editing tool OBO-Edit, and improvements to the AmiGO browser interface.


Nucleic Acids Research | 2002

Saccharomyces Genome Database (SGD) provides secondary gene annotation using the Gene Ontology (GO)

Selina S. Dwight; Midori A. Harris; Kara Dolinski; Catherine A. Ball; Gail Binkley; Karen R. Christie; Dianna G. Fisk; Laurie Issel-Tarver; Mark Schroeder; Gavin Sherlock; Anand Sethuraman; Shuai Weng; David Botstein; J. Michael Cherry

The Saccharomyces Genome Database (SGD) resources, ranging from genetic and physical maps to genome-wide analysis tools, reflect the scientific progress in identifying genes and their functions over the last decade. As emphasis shifts from identification of the genes to identification of the role of their gene products in the cell, SGD seeks to provide its users with annotations that will allow relationships to be made between gene products, both within Saccharomyces cerevisiae and across species. To this end, SGD is annotating genes to the Gene Ontology (GO), a structured representation of biological knowledge that can be shared across species. The GO consists of three separate ontologies describing molecular function, biological process and cellular component. The goal is to use published information to associate each characterized S.cerevisiae gene product with one or more GO terms from each of the three ontologies. To be useful, this must be done in a manner that allows accurate associations based on experimental evidence, modifications to GO when necessary, and careful documentation of the annotations through evidence codes for given citations. Reaching this goal is an ongoing process at SGD. For information on the current progress of GO annotations at SGD and other participating databases, as well as a description of each of the three ontologies, please visit the GO Consortium page at http://www.geneontology.org. SGD gene associations to GO can be found by visiting our site at http://genome-www.stanford.edu/Saccharomyces/.


Nature Reviews Genetics | 2008

Use and misuse of the gene ontology annotations

Seung Y. Rhee; Valerie Wood; Kara Dolinski; Sorin Draghici

The Gene Ontology (GO) project is a collaboration among model organism databases to describe gene products from all organisms using a consistent and computable language. GO produces sets of explicitly defined, structured vocabularies that describe biological processes, molecular functions and cellular components of gene products in both a computer- and human-readable manner. Here we describe key aspects of GO, which, when overlooked, can cause erroneous results, and address how these pitfalls can be avoided.


Nucleic Acids Research | 2004

Saccharomyces Genome Database (SGD) provides tools to identify and analyze sequences from Saccharomyces cerevisiae and related sequences from other organisms

Karen R. Christie; Shuai Weng; Rama Balakrishnan; Maria C. Costanzo; Kara Dolinski; Selina S. Dwight; Stacia R. Engel; Becket Feierbach; Dianna G. Fisk; Jodi E. Hirschman; Eurie L. Hong; Laurie Issel-Tarver; Robert S. Nash; Anand Sethuraman; Barry Starr; Chandra L. Theesfeld; Rey Andrada; Gail Binkley; Qing Dong; Christopher Lane; Mark Schroeder; David Botstein; J. Michael Cherry

The Saccharomyces Genome Database (SGD; http://www.yeastgenome.org/), a scientific database of the molecular biology and genetics of the yeast Saccharomyces cerevisiae, has recently developed several new resources that allow the comparison and integration of information on a genome-wide scale, enabling the user not only to find detailed information about individual genes, but also to make connections across groups of genes with common features and across different species. The Fungal Alignment Viewer displays alignments of sequences from multiple fungal genomes, while the Sequence Similarity Query tool displays PSI-BLAST alignments of each S.cerevisiae protein with similar proteins from any species whose sequences are contained in the non-redundant (nr) protein data set at NCBI. The Yeast Biochemical Pathways tool integrates groups of genes by their common roles in metabolism and displays the metabolic pathways in a graphical form. Finally, the Find Chromosomal Features search interface provides a versatile tool for querying multiple types of information in SGD.

Collaboration


Dive into the Kara Dolinski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge