Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Kara L. Conway is active.

Publication


Featured researches published by Kara L. Conway.


Proceedings of the National Academy of Sciences of the United States of America | 2014

IL-1 receptor blockade restores autophagy and reduces inflammation in chronic granulomatous disease in mice and in humans

Antonella De Luca; Sanne P. Smeekens; Andrea Casagrande; Rossana G. Iannitti; Kara L. Conway; Mark S. Gresnigt; Jakob Begun; Theo S. Plantinga; Leo A. B. Joosten; Jos W. M. van der Meer; Georgios Chamilos; Mihai G. Netea; Ramnik J. Xavier; Charles A. Dinarello; Luigina Romani; Frank L. van de Veerdonk

Significance Chronic granulomatous disease (CGD) has an immunodeficiency component and, in addition, an autoinflammatory component in which autophagy and inflammasome activation are linked and amenable to IL-1 blockade. This study provides a rationale to perform clinical trials to investigate the efficacy of blocking IL-1 in CGD colitis and expands the therapeutic potential of IL-1 antagonists to inflammatory diseases with defective autophagy. Patients with chronic granulomatous disease (CGD) have a mutated NADPH complex resulting in defective production of reactive oxygen species; these patients can develop severe colitis and are highly susceptible to invasive fungal infection. In NADPH oxidase-deficient mice, autophagy is defective but inflammasome activation is present despite lack of reactive oxygen species production. However, whether these processes are mutually regulated in CGD and whether defective autophagy is clinically relevant in patients with CGD is unknown. Here, we demonstrate that macrophages from CGD mice and blood monocytes from CGD patients display minimal recruitment of microtubule-associated protein 1 light chain 3 (LC3) to phagosomes. This defect in autophagy results in increased IL-1β release. Blocking IL-1 with the receptor antagonist (anakinra) decreases neutrophil recruitment and T helper 17 responses and protects CGD mice from colitis and also from invasive aspergillosis. In addition to decreased inflammasome activation, anakinra restored autophagy in CGD mice in vivo, with increased Aspergillus-induced LC3 recruitment and increased expression of autophagy genes. Anakinra also increased Aspergillus-induced LC3 recruitment from 23% to 51% (P < 0.01) in vitro in monocytes from CGD patients. The clinical relevance of these findings was assessed by treating CGD patients who had severe colitis with IL-1 receptor blockade using anakinra. Anakinra treatment resulted in a rapid and sustained improvement in colitis. Thus, inflammation in CGD is due to IL-1–dependent mechanisms, such as decreased autophagy and increased inflammasome activation, which are linked pathological conditions in CGD that can be restored by IL-1 receptor blockade.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Atg16L1 T300A variant decreases selective autophagy resulting in altered cytokine signaling and decreased antibacterial defense.

Kara G. Lassen; Petric Kuballa; Kara L. Conway; Khushbu K. Patel; Christine E. Becker; Joanna M. Peloquin; Eduardo J. Villablanca; Jason M. Norman; Ta-Chiang Liu; Robert J. Heath; Morgan L. Becker; Lola Fagbami; Heiko Horn; Johnathan Mercer; Ömer H. Yilmaz; Jacob D. Jaffe; Alykhan F. Shamji; Atul K. Bhan; Steven A. Carr; Mark J. Daly; Herbert W. Virgin; Stuart L. Schreiber; Thaddeus S. Stappenbeck; Ramnik J. Xavier

Significance Although advances in human genetics have shaped our understanding of many complex diseases, little is known about the mechanism of action of alleles that influence disease. By using mice expressing a Crohn disease (CD)-associated risk polymorphism (Atg16L1 T300A), we show that Atg16L1 T300A-expressing mice demonstrate abnormalities in Paneth cells (similar to patients with the risk polymorphism) and goblet cells. We show that Atg16L1 T300A protein is more susceptible to caspase-mediated cleavage than WT autophagy related 16-like 1 (Atg16L1), resulting in decreased protein stability and effects on antibacterial autophagy and inflammatory cytokine production. We also identify interacting proteins that contribute to autophagy-dependent immune responses. Understanding how ATG16L1 T300A modulates autophagy-dependent immune responses sheds light on the mechanisms that underlie initiation and progression of CD. A coding polymorphism (Thr300Ala) in the essential autophagy gene, autophagy related 16-like 1 (ATG16L1), confers increased risk for the development of Crohn disease, although the mechanisms by which single disease-associated polymorphisms contribute to pathogenesis have been difficult to dissect given that environmental factors likely influence disease initiation in these patients. Here we introduce a knock-in mouse model expressing the Atg16L1 T300A variant. Consistent with the human polymorphism, T300A knock-in mice do not develop spontaneous intestinal inflammation, but exhibit morphological defects in Paneth and goblet cells. Selective autophagy is reduced in multiple cell types from T300A knock-in mice compared with WT mice. The T300A polymorphism significantly increases caspase 3- and caspase 7-mediated cleavage of Atg16L1, resulting in lower levels of full-length Atg16Ll T300A protein. Moreover, Atg16L1 T300A is associated with decreased antibacterial autophagy and increased IL-1β production in primary cells and in vivo. Quantitative proteomics for protein interactors of ATG16L1 identified previously unknown nonoverlapping sets of proteins involved in ATG16L1-dependent antibacterial autophagy or IL-1β production. These findings demonstrate how the T300A polymorphism leads to cell type- and pathway-specific disruptions of selective autophagy and suggest a mechanism by which this polymorphism contributes to disease.


Gastroenterology | 2013

Atg16l1 is required for autophagy in intestinal epithelial cells and protection of mice from Salmonella infection

Kara L. Conway; Petric Kuballa; Joo Hye Song; Khushbu K. Patel; Adam B. Castoreno; Ömer H. Yilmaz; Humberto Jijon; Mei Zhang; Leslie N. Aldrich; Eduardo J. Villablanca; Joanna M. Peloquin; Gautam Goel; In–Ah Lee; Emiko Mizoguchi; Hai Ning Shi; Atul K. Bhan; Stanley Y. Shaw; Stuart L. Schreiber; Herbert W. Virgin; Alykhan F. Shamji; Thaddeus S. Stappenbeck; Hans-Christian Reinecker; Ramnik J. Xavier

BACKGROUND & AIMS Intestinal epithelial cells aid in mucosal defense by providing a physical barrier against entry of pathogenic bacteria and secreting antimicrobial peptides (AMPs). Autophagy is an important component of immune homeostasis. However, little is known about its role in specific cell types during bacterial infection in vivo. We investigated the role of autophagy in the response of intestinal epithelial and antigen-presenting cells to Salmonella infection in mice. METHODS We generated mice deficient in Atg16l1 in epithelial cells (Atg16l1(f/f) × Villin-cre) or CD11c(+) cells (Atg16l1(f/f) × CD11c-cre); these mice were used to assess cell type-specific antibacterial autophagy. All responses were compared with Atg16l1(f/f) mice (controls). Mice were infected with Salmonella enterica serovar typhimurium; cecum and small-intestine tissues were collected for immunofluorescence, histology, and quantitative reverse-transcription polymerase chain reaction analyses of cytokines and AMPs. Modulators of autophagy were screened to evaluate their effects on antibacterial responses in human epithelial cells. RESULTS Autophagy was induced in small intestine and cecum after infection with S typhimurium, and required Atg16l1. S typhimurium colocalized with microtubule-associated protein 1 light chain 3β (Map1lc3b or LC3) in the intestinal epithelium of control mice but not in Atg16l1(f/f) × Villin-cre mice. Atg16l1(f/f) × Villin-cre mice also had fewer Paneth cells and abnormal granule morphology, leading to reduced expression of AMPs. Consistent with these defective immune responses, Atg16l1(f/f) × Villin-cre mice had increased inflammation and systemic translocation of bacteria compared with control mice. In contrast, we observed few differences between Atg16l1(f/f) × CD11c-cre and control mice. Trifluoperazine promoted autophagy and bacterial clearance in HeLa cells; these effects were reduced upon knockdown of ATG16L1. CONCLUSIONS Atg16l1 regulates autophagy in intestinal epithelial cells and is required for bacterial clearance. It also is required to prevent systemic infection of mice with enteric bacteria.


Autophagy | 2013

ATG5 regulates plasma cell differentiation.

Kara L. Conway; Petric Kuballa; Bernard Khor; Mei Zhang; Hai Ning Shi; Herbert W. Virgin; Ramnik J. Xavier

Autophagy is a conserved homeostatic process in which cytoplasmic contents are degraded and recycled. Two ubiquitin-like conjugation pathways are required for the generation of autophagosomes, and ATG5 is necessary for both of these processes. Studies of mice deficient in ATG5 reveal a key role for autophagy in T lymphocyte function, as well as in B cell development and B-1a B cell maintenance. However, the role of autophagy genes in B cell function and antibody production has not been described. Using mice in which Atg5 is conditionally deleted in B lymphocytes, we showed here that this autophagy gene is essential for plasma cell homeostasis. In the absence of B cell ATG5 expression, antibody responses were significantly diminished during antigen-specific immunization, parasitic infection and mucosal inflammation. Atg5-deficient B cells maintained the ability to produce immunoglobulin and undergo class-switch recombination, yet had impaired SDC1 expression, significantly decreased antibody secretion in response to toll-like receptor ligands, and an inability to upregulate plasma cell transcription factors. These results build upon previous data demonstrating a role for ATG5 in early B cell development, illustrating its importance in late B cell activation and subsequent plasma cell differentiation.


Journal of Immunology | 2006

Early Preplasma Cells Define a Tolerance Checkpoint for Autoreactive B Cells

Donna A. Culton; Brian P. O'conner; Kara L. Conway; Ramiro Diz; Jennifer A. Rutan; Barbara J. Vilen; Stephen H. Clarke

Ab-secreting plasma cells (PCs) are the effectors of humoral immunity. In this study, we describe regulation of autoreactive B cells specific for the ribonucleoprotein Smith (Sm) at an early pre-PC stage. These cells are defined by the expression of the PC marker CD138 and normal levels of CD19 and B220. They are present at a high frequency in normal mouse spleen and bone marrow, are Ag dependent, and are located predominantly along the T cell-B cell border and near bridging channels. Anti-Sm pre-PCs also occur at a high frequency in nonautoimmune mice and show additional phenotypic characteristics of PC differentiation. However, while some of these pre-PCs are Ab-secreting cells, those specific for Sm are not, indicating regulation. Consistent with this, anti-Sm pre-PCs have a higher turnover rate and higher frequency of cell death than those that do not bind Sm. Regulation of anti-Sm pre-PCs occurs upstream of the transcriptional repressor, B lymphocyte-induced maturation protein-1, expression. Regulation at this stage is overcome in autoimmune MRL/lpr mice and is accompanied by an altered B lymphocyte stimulator receptor profile. These data reveal a new B cell tolerance checkpoint that is overcome in autoimmunity.


Journal of Immunology | 2006

EBV Latent Membrane Protein 2A Induces Autoreactive B Cell Activation and TLR Hypersensitivity

Hongsheng Wang; Matilda W. Nicholas; Kara L. Conway; Pradip Sen; Ramiro Diz; Roland Tisch; Stephen H. Clarke

EBV is associated with systemic lupus erythematosus (SLE), but how it might contribute to the etiology is not clear. Since EBV-encoded latent membrane protein 2A (LMP2A) interferes with normal B cell differentiation and function, we sought to determine its effect on B cell tolerance. Mice transgenic for both LMP2A and the Ig transgene 2-12H specific for the ribonucleoprotein Smith (Sm), a target of the immune system in SLE, develop a spontaneous anti-Sm response. LMP2A allows anti-Sm B cells to overcome the regulatory checkpoint at the early preplasma cell stage by a self-Ag-dependent mechanism. LMP2A induces a heightened sensitivity to TLR ligand stimulation, resulting in increased proliferation or Ab-secreting cell differentiation or both. Thus, we propose a model whereby LMP2A induces hypersensitivity to TLR stimulation, leading to activation of anti-Sm B cells through the BCR/TLR pathway. These data further implicate TLRs in the etiology of SLE and suggest a mechanistic link between EBV infection and SLE.


eLife | 2015

The kinase DYRK1A reciprocally regulates the differentiation of Th17 and regulatory T cells

Bernard Khor; John Gagnon; Gautam Goel; Marly I. Roche; Kara L. Conway; Khoa Tran; Leslie N. Aldrich; Thomas B. Sundberg; Alison M. Paterson; Scott Mordecai; David Dombkowski; Melanie Schirmer; Pauline H. Tan; Atul K. Bhan; Rahul Roychoudhuri; Nicholas P. Restifo; John J. O'Shea; Benjamin D. Medoff; Alykhan F. Shamji; Stuart L. Schreiber; Arlene H. Sharpe; Stanley Y. Shaw; Ramnik J. Xavier

The balance between Th17 and T regulatory (Treg) cells critically modulates immune homeostasis, with an inadequate Treg response contributing to inflammatory disease. Using an unbiased chemical biology approach, we identified a novel role for the dual specificity tyrosine-phosphorylation-regulated kinase DYRK1A in regulating this balance. Inhibition of DYRK1A enhances Treg differentiation and impairs Th17 differentiation without affecting known pathways of Treg/Th17 differentiation. Thus, DYRK1A represents a novel mechanistic node at the branch point between commitment to either Treg or Th17 lineages. Importantly, both Treg cells generated using the DYRK1A inhibitor harmine and direct administration of harmine itself potently attenuate inflammation in multiple experimental models of systemic autoimmunity and mucosal inflammation. Our results identify DYRK1A as a physiologically relevant regulator of Treg cell differentiation and suggest a broader role for other DYRK family members in immune homeostasis. These results are discussed in the context of human diseases associated with dysregulated DYRK activity. DOI: http://dx.doi.org/10.7554/eLife.05920.001


Journal of Immunology | 2012

p40phox Expression Regulates Neutrophil Recruitment and Function during the Resolution Phase of Intestinal Inflammation

Kara L. Conway; Gautam Goel; Harry Sokol; Monika Manocha; Emiko Mizoguchi; Cox Terhorst; Atul K. Bhan; Agnès Gardet; Ramnik J. Xavier

NADPH oxidase is a multisubunit complex that assembles during phagocytosis to generate reactive oxygen species. Several components of this complex have been implicated in chronic granulomatous disease and Crohn’s disease, highlighting the importance of reactive oxygen species in regulating host immune response. In this study, we use genetically deficient mice to elucidate how p40phox, one subunit of the NADPH oxidase complex, functions during intestinal inflammation. We show that p40phox deficiency enhances inflammation in both dextran sulfate sodium-induced and innate immune-mediated murine colitis models. This inflammation is characterized by severe colonic tissue injury, increased proinflammatory cytokines, and increased neutrophil recruitment. We demonstrate that neutrophils are essential during the recovery phase of intestinal inflammation and that p40phox expression is necessary for this restitution. Lastly, using an integrative bioinformatic approach, we show that p40phox deficiency leads to upregulation of chemokine receptor 1 and downregulation of enzymes involved in glycan modifications, including fucosyltransferases and sialyltransferases, during inflammation. We propose that p40phox deficiency enhances intestinal inflammation through the dysregulation of these two pathways in neutrophils.


Immunity | 2015

Ubiquitin Ligase TRIM62 Regulates CARD9-Mediated Anti-fungal Immunity and Intestinal Inflammation

Zhifang Cao; Kara L. Conway; Robert J. Heath; Jason S. Rush; Elizaveta S. Leshchiner; Zaida G. Ramirez-Ortiz; Natalia B. Nedelsky; Hailiang Huang; Aylwin Ng; Agnès Gardet; Shih-Chin Cheng; Alykhan F. Shamji; John D. Rioux; Cisca Wijmenga; Mihai G. Netea; Terry K. Means; Mark J. Daly; Ramnik J. Xavier

CARD9 is a central component of anti-fungal innate immune signaling via C-type lectin receptors, and several immune-related disorders are associated with CARD9 alterations. Here, we used a rare CARD9 variant that confers protection against inflammatory bowel disease as an entry point to investigating CARD9 regulation. We showed that the protective variant of CARD9, which is C-terminally truncated, acted in a dominant-negative manner for CARD9-mediated cytokine production, indicating an important role for the C terminus in CARD9 signaling. We identified TRIM62 as a CARD9 binding partner and showed that TRIM62 facilitated K27-linked poly-ubiquitination of CARD9. We identified K125 as the ubiquitinated residue on CARD9 and demonstrated that this ubiquitination was essential for CARD9 activity. Furthermore, we showed that similar to Card9-deficient mice, Trim62-deficient mice had increased susceptibility to fungal infection. In this study, we utilized a rare protective allele to uncover a TRIM62-mediated mechanism for regulation of CARD9 activation.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Small-molecule enhancers of autophagy modulate cellular disease phenotypes suggested by human genetics

Szu Yu Kuo; Adam B. Castoreno; Leslie N. Aldrich; Kara G. Lassen; Gautam Goel; Vlado Dančík; Petric Kuballa; Isabel Latorre; Kara L. Conway; Sovan Sarkar; Dorothea Maetzel; Rudolf Jaenisch; Paul A. Clemons; Stuart L. Schreiber; Alykhan F. Shamji; Ramnik J. Xavier

Significance Given the importance of autophagy in a number of human diseases, we have identified small-molecule modulators of autophagy that affect disease-associated phenotypes in relevant cell types. BRD5631 and related compounds can serve as tools for studying how autophagy regulates immune pathways, and for evaluating the therapeutic potential of modulating autophagy in a variety of disease contexts. Deeper investigation into their mechanisms of action may reveal proteins and pathways that could serve as relevant targets for future therapeutic discovery. Studies of human genetics and pathophysiology have implicated the regulation of autophagy in inflammation, neurodegeneration, infection, and autoimmunity. These findings have motivated the use of small-molecule probes to study how modulation of autophagy affects disease-associated phenotypes. Here, we describe the discovery of the small-molecule probe BRD5631 that is derived from diversity-oriented synthesis and enhances autophagy through an mTOR-independent pathway. We demonstrate that BRD5631 affects several cellular disease phenotypes previously linked to autophagy, including protein aggregation, cell survival, bacterial replication, and inflammatory cytokine production. BRD5631 can serve as a valuable tool for studying the role of autophagy in the context of cellular homeostasis and disease.

Collaboration


Dive into the Kara L. Conway's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge