Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen A. Power is active.

Publication


Featured researches published by Karen A. Power.


Journal of Applied Microbiology | 2012

Cronobacter species (formerly known as Enterobacter sakazakii) in powdered infant formula: a review of our current understanding of the biology of this bacterium

Qiongqiong Yan; Orla Condell; Karen A. Power; Francis Butler; Ben D. Tall; Séamus Fanning

Cronobacter species (formerly known as Enterobacter sakazakii) are opportunistic pathogens that can cause necrotizing enterocolitis, bacteraemia and meningitis, predominantly in neonates. Infection in these vulnerable infants has been linked to the consumption of contaminated powdered infant formula (PIF). Considerable research has been undertaken on this organism in the past number of years which has enhanced our understanding of this neonatal pathogen leading to improvements in its control within the PIF production environment. The taxonomy of the organism resulted in the recognition of a new genus, Cronobacter, which consists of seven species. This paper presents an up‐to‐date review of our current knowledge of Cronobacter species. Taxonomy, genome sequencing, current detection protocols and epidemiology are all discussed. In addition, consideration is given to the control of this organism in the manufacturing environment, as a first step towards reducing the occurrence of this pathogen in PIF.


Applied and Environmental Microbiology | 2012

Efficacy of Biocides Used in the Modern Food Industry To Control Salmonella enterica, and Links between Biocide Tolerance and Resistance to Clinically Relevant Antimicrobial Compounds

Orla Condell; Carol Iversen; Shane Cooney; Karen A. Power; Ciara Walsh; Catherine M. Burgess; Séamus Fanning

ABSTRACT Biocides play an essential role in limiting the spread of infectious disease. The food industry is dependent on these agents, and their increasing use is a matter for concern. Specifically, the emergence of bacteria demonstrating increased tolerance to biocides, coupled with the potential for the development of a phenotype of cross-resistance to clinically important antimicrobial compounds, needs to be assessed. In this study, we investigated the tolerance of a collection of susceptible and multidrug-resistant (MDR) Salmonella enterica strains to a panel of seven commercially available food-grade biocide formulations. We explored their abilities to adapt to these formulations and their active biocidal agents, i.e., triclosan, chlorhexidine, hydrogen peroxide, and benzalkonium chloride, after sequential rounds of in vitro selection. Finally, cross-tolerance of different categories of biocidal formulations, their active agents, and the potential for coselection of resistance to clinically important antibiotics were investigated. Six of seven food-grade biocide formulations were bactericidal at their recommended working concentrations. All showed a reduced activity against both surface-dried and biofilm cultures. A stable phenotype of tolerance to biocide formulations could not be selected. Upon exposure of Salmonella strains to an active biocidal compound, a high-level of tolerance was selected for a number of Salmonella serotypes. No cross-tolerance to the different biocidal agents or food-grade biocide formulations was observed. Most tolerant isolates displayed changes in their patterns of susceptibility to antimicrobial compounds. Food industry biocides are effective against planktonic Salmonella. When exposed to sublethal concentrations of individual active biocidal agents, tolerant isolates may emerge. This emergence was associated with changes in antimicrobial susceptibilities.


Arthritis & Rheumatism | 2011

Identification of Cell Surface-Specific Markers to Target Human Nucleus Pulposus Cells Expression of Carbonic Anhydrase XII Varies With Age and Degeneration

Karen A. Power; Sibylle Grad; J.P.H.J. Rutges; Laura B. Creemers; Mattie H.P. van Rijen; Peadar O'Gaora; J. Gerard Wall; Mauro Alini; Abhay Pandit; William M. Gallagher

OBJECTIVE Back pain is a major cause of disability, affecting millions of people worldwide. One cause of axial back pain is degeneration of the nucleus pulposus (NP) of the intervertebral disc. This study was undertaken to investigate associations of NP cells with cell surface-specific proteins that differ from proteins in closely related cell types, i.e., intervertebral disc anulus fibrosus (AF) cells and articular cartilage (AC) chondrocytes, in order to identify potential surface molecules for directed delivery of therapeutic agents. METHODS We conducted a complementary DNA microarray analysis of 16 human samples from 6 donors, followed by gene list reduction using a systematic approach. Genes that were more highly expressed in NP than AC cells, contained transmembrane domains, and appeared attractive for targeting were assessed by quantitative reverse transcription-polymerase chain reaction (RT-PCR). As a viable candidate, carbonic anhydrase XII (CAXII) was analyzed at the protein level by immunohistochemistry and functional study. RESULTS Microarray results demonstrated a clear divide between the AC and AF and between the AC and NP samples. However, the transcriptomic profile of AF and NP samples displayed a greater intersubject similarity. Of the 552 genes with up-regulated expression in NP cells, 90 contained transmembrane domains, and 28 were quantified by RT-PCR. Most intense CAXII labeling was observed in the NP of discs from young subjects and in degenerative tissue. CONCLUSION CAXII may be considered for detection or targeting of degenerating disc cells. Furthermore, CAXII may be involved in pH regulation of NP cells. Its potential for directed delivery of regenerative factors and its functional role in NP cell homeostasis warrant further investigation.


BMC Genomics | 2013

Pan-genome analysis of the emerging foodborne pathogen Cronobacter spp. suggests a species- level bidirectional divergence driven by niche adaptation

Christopher J Grim; Michael L. Kotewicz; Karen A. Power; Gopal Gopinath; A. A. Franco; Karen Jarvis; Qiong Q. Yan; Scott A. Jackson; Venugopal Sathyamoorthy; Lan Hu; Franco Pagotto; Carol Iversen; Angelika Lehner; Roger Stephan; Séamus Fanning; Ben D. Tall

BackgroundMembers of the genus Cronobacter are causes of rare but severe illness in neonates and preterm infants following the ingestion of contaminated infant formula. Seven species have been described and two of the species genomes were subsequently published. In this study, we performed comparative genomics on eight strains of Cronobacter, including six that we sequenced (representing six of the seven species) and two previously published, closed genomes.ResultsWe identified and characterized the features associated with the core and pan genome of the genus Cronobacter in an attempt to understand the evolution of these bacteria and the genetic content of each species. We identified 84 genomic regions that are present in two or more Cronobacter genomes, along with 45 unique genomic regions. Many potentially horizontally transferred genes, such as lysogenic prophages, were also identified. Most notable among these were several type six secretion system gene clusters, transposons that carried tellurium, copper and/or silver resistance genes, and a novel integrative conjugative element.ConclusionsCronobacter have diverged into two clusters, one consisting of C. dublinensis and C. muytjensii (Cdub-Cmuy) and the other comprised of C. sakazakii, C. malonaticus, C. universalis, and C. turicensis, (Csak-Cmal-Cuni-Ctur) from the most recent common ancestral species. While several genetic determinants for plant-association and human virulence could be found in the core genome of Cronobacter, the four Cdub-Cmuy clade genomes contained several accessory genomic regions important for survival in a plant-associated environmental niche, while the Csak-Cmal-Cuni-Ctur clade genomes harbored numerous virulence-related genetic traits.


Journal of Proteomics | 2012

Comparative proteomic analysis of Salmonella tolerance to the biocide active agent triclosan.

Orla Condell; Á. Sheridan; Karen A. Power; R. Bonilla-Santiago; K. Sergeant; Jenny Renaut; Catherine M. Burgess; Séamus Fanning; Jarlath E. Nally

Concern has been expressed about the overuse of biocides in farm animal production and food industries. Biocide application can create selective pressures that lead to increased tolerance to one or more of these compounds and are concomitant with the emergence of cross-resistance to antibiotics. A triclosan sensitive Salmonella enterica serovar Typhimurium and the isogenic triclosan tolerant mutant were studied at the proteomic level in order to elucidate cellular mechanisms that facilitate biocide tolerance. 2-D differential fluorescent gel electrophoresis (DIGE) compared protein profiles of parent and mutant Salmonella, in the presence and absence of triclosan. Differentially expressed proteins were identified by mass spectrometry and divided into two groups: Group A describes proteins differentially expressed between susceptible and triclosan tolerant Salmonella and includes the known triclosan target FabI which contained a mutation at the triclosan target binding site. Group B identified proteins differentially expressed in response to triclosan exposure and defines a general cell defence network. Only four proteins were common to both groups highlighting the diverse range of pathways employed by Salmonella to counteract biocides. These data suggest that sub-lethal concentrations of triclosan induce discernible changes in the proteome of exposed Salmonella and provide insights into mechanisms of response and tolerance.


Journal of Antimicrobial Chemotherapy | 2014

Nucleotide sequences of 16 transmissible plasmids identified in nine multidrug-resistant Escherichia coli isolates expressing an ESBL phenotype isolated from food-producing animals and healthy humans

Juan Wang; Roger Stephan; Karen A. Power; Qiongqiong Yan; Herbert Hächler; Séamus Fanning

OBJECTIVES Nine extended-spectrum β-lactamase (ESBL)-producing Escherichia coli isolated from healthy humans and food-producing animals were found to transfer their cefotaxime resistance marker at high frequency in laboratory conjugation experiments. The objective of this study was to completely characterize 16 transmissible plasmids that were detected in these bacterial isolates. METHODS The nucleotide sequences of all 16 plasmids were determined from transconjugants using next-generation sequencing technology. Open reading frames were assigned using Rapid Annotation using Subsystem Technology and analysed by BLASTn and BLASTp. The standard method was used for plasmid multilocus sequence typing (pMLST) analysis. Plasmid structures were subsequently confirmed by PCR amplification of selected regions. RESULTS The complete circularized nucleotide sequence of 14 plasmids was determined, along with that of a further two plasmids that could not be confirmed as closed. These ranged in size from 1.8 to 166.6 kb. Incompatibility groups and pMLSTs identified included IncI1/ST3, IncI1/ST36, IncN/ST1, IncF and IncB/O, and those of the same Inc types presented a similar backbone structure despite being isolated from different sources. Eight plasmids contained bla(CTX-M-1) genes that were associated with either ISEcp1 or IS26 insertion sequence elements. Six plasmids isolated from humans and chickens were identical or closely related to the IncI1 reference plasmid, R64. CONCLUSIONS These data, based on comparative sequence analysis, highlight the successful spread of blaESBL-harbouring plasmids of different Inc types among isolates of human and food-producing animal origin and provide further evidence for potential dissemination routes.


Molecular Therapy | 2011

Functionalized scaffold-mediated interleukin 10 gene delivery significantly improves survival rates of stem cells in vivo.

Carolyn Holladay; Karen A. Power; Michael V. Sefton; Timothy O'Brien; William M. Gallagher; Abhay Pandit

While stem cell transplantation could potentially treat a variety of disorders, clinical studies have not yet demonstrated conclusive benefits. This may be partly because transplanted stem cells have low survival rates, potentially due to host inflammation. The system described herein used two different gene therapy techniques to improve retention of rat mesenchymal stem cells. In the first, stem cells were transfected with interleukin-10 (IL-10) before being loaded into a collagen scaffold. In the second, unmodified stem cells were loaded into a collagen scaffold along with polymer-complexed IL-10 plasmids. The scaffolds were surgically implanted into the dorsum of syngeneic rats. At each endpoint, the scaffolds were explanted and cell retention, IL-10 level and inflammatory response were quantified. All treatment groups had statistically significant increases in cell retention after 7 days, but the group treated with 2 µg of IL-10 polyplexes had a significant improvement even at 21 days. This cell retention was associated with increased IL-10 and decreased levels of proinflammatory cytokines and apoptosis. The primary effect on the inflammatory response appeared to be on macrophage differentiation, encouraging the regulatory phenotype over the cytotoxic lineage. Improving cell survival may be an important step toward realization of the therapeutic potential of stem cells.


PLOS ONE | 2009

High-Throughput Proteomics Detection of Novel Splice Isoforms in Human Platelets

Karen A. Power; James P. McRedmond; Andreas de Stefani; William M. Gallagher; Peadar Ó Gaora

Alternative splicing (AS) is an intrinsic regulatory mechanism of all metazoans. Recent findings suggest that 100% of multiexonic human genes give rise to splice isoforms. AS can be specific to tissue type, environment or developmentally regulated. Splice variants have also been implicated in various diseases including cancer. Detection of these variants will enhance our understanding of the complexity of the human genome and provide disease-specific and prognostic biomarkers. We adopted a proteomics approach to identify exon skip events - the most common form of AS. We constructed a database harboring the peptide sequences derived from all hypothetical exon skip junctions in the human genome. Searching tandem mass spectrometry (MS/MS) data against the database allows the detection of exon skip events, directly at the protein level. Here we describe the application of this approach to human platelets, including the mRNA-based verification of novel splice isoforms of ITGA2, NPEPPS and FH. This methodology is applicable to all new or existing MS/MS datasets.


Foodborne Pathogens and Disease | 2013

Identification and Characterization of Five New Molecular Serogroups of Cronobacter spp.

Karen Jarvis; Qiong Q. Yan; Christopher J. Grim; Karen A. Power; A. A. Franco; Lan Hu; Gopal Gopinath; Venugopal Sathyamoorthy; Michael L. Kotewicz; Mahendra H. Kothary; Chloe Lee; Jennifer Sadowski; Séamus Fanning; Ben D. Tall

Cronobacter spp. (formerly Enterobacter sakazakii) is an emerging foodborne pathogen consisting of seven species including C. sakazakii, C. malonaticus, C. muytjensii, C. turicensis, C. dublinensis (with three subspecies, dublinensis, lausannensis, and lactaridi), C. universalis, and C. condimenti. To date, 12 Cronobacter serogroups have been identified. In this study, MboII restriction fragment length polymorphism patterns and DNA sequences of O-antigen gene clusters were used to identify novel serogroups of Cronobacter spp. Sequence analysis of the O-antigen regions, located between galF and gnd, of strains with distinct restriction fragment length polymorphism patterns revealed five unique gene clusters. These new O-antigen gene clusters were species specific and were termed C. turicensis O3, C. muytjensii O2, C. dublinensis O1, C. dublinensis O2, and C. universalis O1. Polymerase chain reaction assays were developed using primers specific to O-antigen processing genes and used to screen a collection of Cronobacter strains to determine the frequency of these newly identified serotypes.


Small | 2011

Standardization of models and methods used to assess nanoparticles in cardiovascular applications.

Kathleen T. Fitzgerald; Carolyn Holladay; Cathal McCarthy; Karen A. Power; Abhay Pandit; William M. Gallagher

Nanotechnology has the potential to revolutionize the management and treatment of cardiovascular disease. Controlled drug delivery and nanoparticle-based molecular imaging agents have advanced cardiovascular disease therapy and diagnosis. However, the delivery vehicles (dendrimers, nanocrystals, nanotubes, nanoparticles, nanoshells, etc.), as well as the model systems that are used to mimic human cardiac disease, should be questioned in relation to their suitability. This review focuses on the variations of the biological assays and preclinical models that are currently being used to study the biocompatibility and suitability of nanomaterials in cardiovascular applications. There is a need to standardize appropriate models and methods that will promote the development of novel nanomaterial-based cardiovascular therapies.

Collaboration


Dive into the Karen A. Power's collaboration.

Top Co-Authors

Avatar

Séamus Fanning

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Orla Condell

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

Abhay Pandit

National University of Ireland

View shared research outputs
Top Co-Authors

Avatar

Qiongqiong Yan

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

Ben D. Tall

Center for Food Safety and Applied Nutrition

View shared research outputs
Top Co-Authors

Avatar

Carol Iversen

University College Dublin

View shared research outputs
Top Co-Authors

Avatar

Peadar Ó Gaora

University College Dublin

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge