Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen A. Thole is active.

Publication


Featured researches published by Karen A. Thole.


Journal of Propulsion and Power | 2006

Gas Turbine Film Cooling

David G. Bogard; Karen A. Thole

The durability of gas turbine engines is strongly dependent on the component temperatures. For the combustor and turbine airfoils and endwalls, film cooling is used extensively to reduce component temperatures. Film cooling is a cooling method used in virtually all of todays aircraft turbine engines and in many power-generation turbine engines and yet has very difficult phenomena to predict. The interaction of jets-in-crossflow, which is representative of film cooling, results in a shear layer that leads to mixing and a decay in the cooling performance along a surface. This interaction is highly dependent on the jet-to-crossflow mass and momentum flux ratios. Film-cooling performance is difficult to predict because of the inherent complex flowfields along the airfoil component surfaces in turbine engines. Film cooling is applied to nearly all of the external surfaces associated with the airfoils that are exposed to the hot combustion gasses such as the leading edges, main bodies, blade tips, and endwalls. In a review of the literature, it was found that there are strong effects of freestream turbulence, surface curvature, and hole shape on the performance of film cooling. Film cooling is reviewed through a discussion of the analyses methodologies, a physical description, and the various influences on film-cooling performance.


Journal of Turbomachinery-transactions of The Asme | 2002

Computational Design and Experimental Evaluation of Using a Leading Edge Fillet on a Gas Turbine Vane

Gary Zess; Karen A. Thole

With the desire for increased power output for a gas turbine engine comes the continual push to achieve higher turbine inlet temperatures. Higher temperatures result in large thermal and mechanical stresses particularly along the nozzle guide vane. One critical region along a vane is the leading edge-endwall juncture. Based on the assumption that the approaching flow to this juncture is similar to a two-dimensional boundary layer, previous studies have shown that a horseshoe vortex forms. This vortex forms because of a radial total pressure gradient from the approaching boundary layer. This paper documents the computational design and experimental validation of a fillet placed at the leading edge-endwall juncture of a guide vane to eliminate the horseshoe vortex. The fillet design effectively accelerated the incoming boundary layer thereby mitigating the effect of the total pressure gradient. To verify the CFD studies used to design the leading edge fillet, flow field measurements were performed in a largescale, linear, vane cascade. The flow field measurements were performed with a laser Doppler velocimeter in four planes orientated orthogonal to the vane. Good agreement between the CFD predictions and the experimental measurements verified the effectiveness of the leading edge fillet at eliminating the horseshoe vortex. The flowfield results showed that the turbulent kinetic energy levels were significantly reduced in the endwall region because of the absence of the unsteady horseshoe vortex.


Journal of Turbomachinery-transactions of The Asme | 1999

Heat Transfer and Flowfield Measurements in the Leading Edge Region of a Stator Vane Endwall

M. B. Kang; Atul Kohli; Karen A. Thole

The leading edge region of a first-stage stator vane experiences high heat transfer rates, especially near the endwall, making it very important to get a better understanding of the formation of the leading edge vortex. In order to improve numerical predictions of the complex endwall flow, benchmark quality experimental data are required. To this purpose, this study documents the endwall heat transfer and static pressure coefficient distribution of a modern stator vane for two different exit Reynolds numbers (Re ex = 6 x 10 5 and 1.2 x 10 6 ). In addition, laser-Doppler velocimeter measurements of all three components of the mean and fluctuating velocities are presented for a plane in the leading edge region. Results indicate that the endwall heat transfer, pressure distribution, and flowfield characteristics change with Reynolds number. The endwall pressure distributions show that lower pressure coefficients occur at higher Reynolds numbers due to secondary flows. The stronger secondary flows cause enhanced heat transfer near the trailing edge of the vane at the higher Reynolds number. On the other hand, the mean velocity, turbulent kinetic energy, and vorticity results indicate that leading edge vortex is stronger and more turbulent at the lower Reynolds number. The Reynolds number also has an effect on the location of the separation point, which moves closer to the stator vane at lower Reynolds numbers.


Journal of Turbomachinery-transactions of The Asme | 2005

Adiabatic Effectiveness Measurements of Endwall Film-Cooling for a First Stage Vane

Daniel G. Knost; Karen A. Thole

In gas turbine development, the direction has been towards higher turbine inlet temperatures to increase the work output and thermal efficiency. This extreme environment can significantly impact component life. One means of preventing component burnout in the turbine is to effectively use filmcooling whereby coolant is extracted from the compressor and injected through component surfaces. One such surface is the endwall of the first stage nozzle guide vane. This paper presents measurements of two endwall filmcooling hole patterns combined with cooling from a flush slot that simulates leakage flow between the combustor and turbine sections. Adiabatic effectiveness measurements showed the slot flow adequately cooled portions of the endwall. Measurements also showed two very difficult regions to cool including the leading edge and pressure side-endwall junction. As the momentum flux ratios were increased for the filmcooling jets in the stagnation region, the coolant was shown to impact the vane and wash down onto the endwall surface. Along the pressure side of the vane in the upstream portion of the passage, the jets were shown to separate from the surface rather than penetrate to the pressure surface. In the downstream portion of the passage, the jets along the pressure side of the vane were shown to impact the vane thereby eliminating any uncooled regions at the junction. The measurements were also combined with computations to show the importance of considering the trajectory of the flow in the near-wall region, which can be highly influenced by slot leakage flows.


Journal of Turbomachinery-transactions of The Asme | 2000

Flowfield Measurements for a Highly Turbulent Flow in a Stator Vane Passage

R. W. Radomsky; Karen A. Thole

Turbine vanes experience high convective surface heat transfer as a consequence of the turbulent flow exiting the combustor. Before improvements to vane heat transfer predictions through boundary layer calculations can be made, we need to understand how the turbulent flow in the inviscid region of the passage reacts as it passes between two adjacent turbine vanes. In this study, a scaled-up turbine vane geometry was used in a low-speed wind tunnel simulation. The test section included a central airfoil with two adjacent vanes. To generate the 20 percent turbulence levels at the entrance to the cascade, which simulates levels exiting the combustor, an active grid was used. Three-component laser-Doppler velocimeter measurements of the mean and fluctuating quantities were measured in a plane at the vane midspan. Coincident velocity measurements were made to quantify Reynolds shear stress and correlation coefficients. The energy spectra and length scales were also measured to give a complete set of inlet boundary conditions that can be used for numerical simulations. The results show that the turbulent kinetic energy throughout the inviscid region remained relatively high. The surface heat transfer measurements indicated high augmentation near the leading edge as well as the pressure side of the vane as a result of the elevated turbulence levels.


Journal of Fluids Engineering-transactions of The Asme | 1996

High Freestream Turbulence Effects on Turbulent Boundary Layers

Karen A. Thole; David G. Bogard

High freestream turbulence levels significantly alter the characteristics of turbulent boundary layers. Numerous studies have been conducted with freestreams having turbulence levels of 7 percent or less, but studies using turbulence levels greater than 10 percent have been essentially limited to the effects on wall shear stress and heat transfer. This paper presents measurements of the boundary layer statistics for the interaction between a turbulent boundary layer and a freestream with turbulence levels ranging from 10 to 20 percent. The boundary layer statistics reported in this paper include mean and rms velocities, velocity correlation coefficients, length scales, and power spectra. Although the freestream turbulent eddies penetrate into the boundary layer at high freestream turbulence levels, as shown through spectra and length scale measurements, the mean velocity profile still exhibits a log-linear region. Direct measurements of total shear stress (turbulent shear stress and viscous shear stress) confirm the validity of the log-law at high freestream turbulence levels. Velocity defects in the outer region of the boundary layer were significantly decreased resulting in negative wake parameters. Fluctuating rms velocities were only affected when the freestream turbulence levels exceeded the levels of the boundary layer generated rms velocities. Length scales and power spectra measurements showed large scale turbulent eddies penetrate to within y+ = 15 of the wall.


Journal of Turbomachinery-transactions of The Asme | 2000

Flowfield Measurements in the Endwall Region of a Stator Vane

M. B. Kang; Karen A. Thole

A first-stage stator vane experiences high heat transfer rates, particularly near the endwall, where strong secondary flows occur. In order to improve numerical predictions of the complex endwall flow at low-speed conditions, benchmark quality experimental data are required. This study documents the flowfield in the endwall region of a stator vane that has been scaled up by a factor of nine while matching an engine exit Reynolds number of Re ex =1.2×10 6 . Laser Doppler velocimeter (LDV) measurements of all three components of the mean and fluctuating velocities are presented for several flow planes normal to the turbine vane. Measurements indicate that downstream of the minimum static pressure location on the suction surface of the vane, an attenuated suction side leg of the horseshoe vortex still exists. At this location, the peak turbulent kinetic energy coincides with the center of the passage vortex location. These flowfield measurements were also related to previously reported convective heat transfer coefficients on the endwall showing that high Stanton numbers occur where the passage vortex brings mainstream fluid toward the vane surface.


Journal of Turbomachinery-transactions of The Asme | 2001

Full-Coverage Film Cooling With Short Normal Injection Holes

Mark K. Harrington; Marcus A. McWaters; David G. Bogard; Christopher A. Lemmon; Karen A. Thole

An experimental and computational investigation was conducted on the film cooling adiabatic effectiveness of a flat plate with full coverage film cooling. The full coverage film cooling array was comprised of ten rows of coolant holes, arranged in a staggered pattern, with short L/D51, normal coolant holes. A single row of cooland holes was also examined to determine the accuracy of a superposition prediction of the full coverage adiabatic effectiveness performance. Large density coolant jets and high mainstream turbulence conditions were utilized to simulate realistic engine conditions. High-resolution adiabatic effectiveness measurements were obtained using infrared imaging techniques and a large-scale flat plate model. Optimum adiabatic effectiveness was found to occur for a blowing ratio of M50.65. At this blowing ratio separation of the coolant jet immediately downstream of the hole was observed. For M 50.65, the high mainstream turbulence decreased the spatially averaged effectiveness level by 12 percent. The high mainstream turbulence produced a larger effect for lower blowing ratios. The superposition model based on single row effectiveness results over-predicted the full coverage effectiveness levels. @DOI: 10.1115/1.1400111#


Journal of Turbomachinery-transactions of The Asme | 2011

A Film-Cooling Correlation for Shaped Holes on a Flat-Plate Surface

Will F. Colban; Karen A. Thole; David G. Bogard

A common method of optimizing coolant performance in gas turbine engines is through the use of shaped film-cooling holes. Despite widespread use of shaped holes, existing correlations for predicting performance are limited to narrow ranges of parameters. This study extends the prediction capability for shaped holes through the development of a physics-based empirical correlation for predicting laterally averaged film-cooling effectiveness on a flat-plate downstream of a row of shaped film-cooling holes. Existing data were used to deternzine the physical relationship between film-cooling effectiveness and several parameters, including blowing ratio, hole coverage ratio, area ratio, and hole spacing. Those relationships were then incorporated into the skeleton form of an empirical correlation, using results from the literature to determine coefficients for the correlation. Predictions from the current correlation, as well as existing shaped-hole correlations and a cylindrical hole correlation, were compared with the existing experimental data. Results show that the current physics-based correlation yields a significant improvement in predictive capability, by expanding the valid parameter range and improving agreement with experimental data. Particularly significant is the inclusion of higher blowing ratio conditions (up to M = 2.5) into the current correlation, whereas the existing correlations worked adequately only at lower blowing ratios (M ≈ 0.5).


Journal of Turbomachinery-transactions of The Asme | 2001

Detailed Boundary Layer Measurements on a Turbine Stator Vane at Elevated Freestream Turbulence Levels

R. W. Radomsky; Karen A. Thole

High freestream turbulence levels have been shown to greatly augment the heat transfer on a gas turbine airfoil. To better understand these effects, this study has examined the effects elevated freestream turbulence levels have on the boundary layer development along a stator vane airfoil. Low freestream turbulence measurements (0.6 percent) were performed as a baseline for comparison to measurements at combustor simulated turbulence levels (19.5 percent). A two-component LDV system was used for detailed boundary layer measurements of both the mean and fluctuating velocities on the pressure and suction surfaces. Although the mean velocity profiles appeared to be more consistent with laminar profiles, large velocity fluctuations were measured in the boundary layer along the pressure side at the high freestream turbulence conditions. Along the suction side, transition occurred further upstream due to freestream turbulence.

Collaboration


Dive into the Karen A. Thole's collaboration.

Top Co-Authors

Avatar

M. D. Barringer

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Stephen P. Lynch

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David G. Bogard

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Seth A. Lawson

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar

Jason K. Ostanek

Naval Surface Warfare Center

View shared research outputs
Top Co-Authors

Avatar

Kathryn L. Kirsch

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge