Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where N. D. Cardwell is active.

Publication


Featured researches published by N. D. Cardwell.


Journal of Turbomachinery-transactions of The Asme | 2006

Effect of Midpassage Gap, Endwall Misalignment, and Roughness on Endwall Film-Cooling

N. D. Cardwell; N. Sundaram; Karen A. Thole

To maintain acceptable turbine airfoil temperatures, film cooling is typically used whereby coolant, extracted from the compressor, is injected through component surfaces. In manufacturing a turbine, the first stage vanes are cast in either single airfoils or double airfoils. As the engine is assembled, these singlets or doublets are placed in a turbine disk in which there are inherent gaps between the airfoils. The turbine is designed to allow outflow of high-pressure coolant rather than hot gas ingestion. Moreover, it is quite possible that the singlets or doublets become misaligned during engine operation. It has also become of interest to the turbine community as to the effect of corrosion and deposition of particles on component heat transfer. This study uses a large-scale turbine vane in which the following two effects are investigated: the effect of a midpassage gap on endwall film cooling and the effect of roughness on endwall film cooling. The results indicate that the midpassage gap was found to have a significant effect on the coolant exiting from the combustor-turbine interface slot. When the gap is misaligned, the results indicate a severe reduction in the film-cooling effectiveness in the case where the pressure side endwall is below the endwall associated with the suction side of the adjacent vane.


ASME Turbo Expo 2006: Power for Land, Sea, and Air | 2006

The Effects of Varying the Combustor-Turbine Gap

N. D. Cardwell; N. Sundaram; Karen A. Thole

To protect hot turbine components, cooler air is bled from the high pressure section of the compressor and routed around the combustor where it is then injected through the turbine surfaces. Some of this high pressure air also leaks through the mating gaps formed between assembled turbine components where these components experience expansions and contractions as the turbine goes through operational cycles. This study presents endwall adiabatic effectiveness levels measured using a scaled up, two-passage turbine vane cascade. The focus of this study is evaluating the effects of thermal expansion and contraction for the combustor-turbine interface. Increasing the mass flow rate for the slot leakage between the combustor and turbine showed increased local adiabatic effectiveness levels while increasing the momentum flux ratio for the slot leakage dictated the coverage area for the cooling. With the mass flow held constant, decreasing the combustor-turbine interface width caused an increase in uniformity of coolant exiting the slot, particularly across the pressure side endwall surface. Increasing the width of the interface had the opposite effect thereby reducing coolant coverage on the endwall surface.© 2006 ASME


Journal of Turbomachinery-transactions of The Asme | 2007

The effects of varying the combustor-turbine gap

N. D. Cardwell; N. Sundaram; Karen A. Thole

To protect hot turbine components, cooler air is bled from the high pressure section of the compressor and routed around the combustor where it is then injected through the turbine surfaces. Some of this high pressure air also leaks through the mating gaps formed between assembled turbine components where these components experience expansions and contractions as the turbine goes through operational cycles. This study presents endwall adiabatic effectiveness levels measured using a scaled up, two-passage turbine vane cascade. The focus of this study is evaluating the effects of thermal expansion and contraction for the combustor-turbine interface. Increasing the mass flow rate for the slot leakage between the combustor and turbine showed increased local adiabatic effectiveness levels while increasing the momentum flux ratio for the slot leakage dictated the coverage area for the cooling. With the mass flow held constant, decreasing the combustor-turbine interface width caused an increase in uniformity of coolant exiting the slot, particularly across the pressure side endwall surface. Increasing the width of the interface had the opposite effect thereby reducing coolant coverage on the endwall surface.


Journal of Turbomachinery-transactions of The Asme | 2010

Investigation of Sand Blocking Within Impingement and Film-Cooling Holes

N. D. Cardwell; Karen A. Thole; S. W. Burd

Gas turbines are not generally designed for operation with a particle laden inlet flow but, in fact, are commonly operated in unclean environments resulting in dirt, sand, and other debris ingestion. In addition to the negative effects within the main gas path, for aeroengines these particles are pulled into the coolant system where they can clog cooling passages and erode internal surfaces. Unlike previous research that focused on deposition and erosion within the main gas path, this study evaluated blocking in a double wall liner whereby both impingement and film-cooling holes were simulated. Double wall liners are commonly used in the combustor and turbine for combined internal and external cooling of metal components. Specifically, sand blockages were evaluated through comparisons of measured flowrates for a particular pressure ratio across the liner. Four liner geometries were tested whereby the coolant hole size and orientation were varied in test coupons. At ambient temperature, blocking was shown to be a function of the impingement flow area. A significant rise in blocking was observed as sand and metal temperatures were increased. The overlap between the impingement and film-cooling holes was also found to have a significant effect.


The Journal of Experimental Biology | 2014

Aerodynamics of the flying snake Chrysopelea paradisi: how a bluff body cross-sectional shape contributes to gliding performance

Daniel Holden; John J. Socha; N. D. Cardwell; Pavlos P. Vlachos

A prominent feature of gliding flight in snakes of the genus Chrysopelea is the unique cross-sectional shape of the body, which acts as the lifting surface in the absence of wings. When gliding, the flying snake Chrysopelea paradisi morphs its circular cross-section into a triangular shape by splaying its ribs and flattening its body in the dorsoventral axis, forming a geometry with fore–aft symmetry and a thick profile. Here, we aimed to understand the aerodynamic properties of the snakes cross-sectional shape to determine its contribution to gliding at low Reynolds numbers. We used a straight physical model in a water tunnel to isolate the effects of 2D shape, analogously to studying the profile of an airfoil of a more typical flyer. Force measurements and time-resolved (TR) digital particle image velocimetry (DPIV) were used to determine lift and drag coefficients, wake dynamics and vortex-shedding characteristics of the shape across a behaviorally relevant range of Reynolds numbers and angles of attack. The snakes cross-sectional shape produced a maximum lift coefficient of 1.9 and maximum lift-to-drag ratio of 2.7, maintained increases in lift up to 35 deg, and exhibited two distinctly different vortex-shedding modes. Within the measured Reynolds number regime (Re=3000–15,000), this geometry generated significantly larger maximum lift coefficients than many other shapes including bluff bodies, thick airfoils, symmetric airfoils and circular arc airfoils. In addition, the snakes shape exhibited a gentle stall region that maintained relatively high lift production even up to the highest angle of attack tested (60 deg). Overall, the cross-sectional geometry of the flying snake demonstrated robust aerodynamic behavior by maintaining significant lift production and near-maximum lift-to-drag ratios over a wide range of parameters. These aerodynamic characteristics help to explain how the snake can glide at steep angles and over a wide range of angles of attack, but more complex models that account for 3D effects and the dynamic movements of aerial undulation are required to fully understand the gliding performance of flying snakes.


Measurement Science and Technology | 2011

A multi-parametric particle-pairing algorithm for particle tracking in single and multiphase flows

N. D. Cardwell; Pavlos P. Vlachos; Karen A. Thole

Multiphase flows (MPFs) offer a rich area of fundamental study with many practical applications. Examples of such flows range from the ingestion of foreign particulates in gas turbines to transport of particles within the human body. Experimental investigation of MPFs, however, is challenging, and requires techniques that simultaneously resolve both the carrier and discrete phases present in the flowfield. This paper presents a new multi-parametric particle-pairing algorithm for particle tracking velocimetry (MP3-PTV) in MPFs. MP3-PTV improves upon previous particle tracking algorithms by employing a novel variable pair-matching algorithm which utilizes displacement preconditioning in combination with estimated particle size and intensity to more effectively and accurately match particle pairs between successive images. To improve the method’s efficiency, a new particle identification and segmentation routine was also developed. Validation of the new method was initially performed on two artificial data sets: a traditional single-phase flow published by the Visualization Society of Japan (VSJ) and an in-house generated MPF data set having a bi-modal distribution of particles diameters. Metrics of the measurement yield, reliability and overall tracking efficiency were used for method comparison. On the VSJ data set, the newly presented segmentation routine delivered a twofold improvement in identifying particles when compared to other published methods. For the simulated MPF data set, measurement efficiency of the carrier phases improved from 9% to 41% for MP3-PTV as compared to a traditional hybrid PTV. When employed on experimental data of a gas‐solid flow, the MP3-PTV effectively identified the two particle populations and reported a vector efficiency and velocity measurement error comparable to measurements for the single-phase flow images. Simultaneous measurement of the dispersed particle and the carrier flowfield velocities allowed for the calculation of instantaneous particle slip velocities, illustrating the algorithm’s strength to robustly and accurately resolve polydispersed MPFs.


Journal of Turbomachinery-transactions of The Asme | 2011

A Method for Identifying and Visualizing Foreign Particle Motion Using Time-Resolved Particle Tracking Velocimetry

N. D. Cardwell; Pavlos P. Vlachos; Karen A. Thole

Gas turbines for aircraft are designed for operation with a clean inlet air flow. This ideal operational condition is often violated during take-off and landing, where the probability of particle ingestion is high, with sand and dirt being the most commonly observed foreign particles. Current research on particle ingestion has identified several mechanisms that contribute to performance degradation in the turbine: erosion of internal and external surfaces, and flow blockages of film-cooling holes and internal cooling passages. The focus of the study given in this paper is to present a method that identifies the motion of foreign particles within an internal ribbed passage. The method uses a highresolution, flow field interrogation method known as time-resolved digital particle image velocimetry (TRDPIV). Observations from the two-phase flows showed that particle collisions occurred more frequently on the upstream surface of the ribs, especially in the inlet region. Results from these collisions included substantial particle breakup, and a particle rebounding phenomenon between the upper and lower walls. Comparisons are made to large eddy simulation predicted particle trajectories indicating some agreement, as well as phenomena that are not predicted due to the inherent assumption of the modeling. DOI: 10.1115/1.4001187


ASME 2008 Fluids Engineering Division Summer Meeting collocated with the Heat Transfer, Energy Sustainability, and 3rd Energy Nanotechnology Conferences | 2008

Developing and Fully Developed Turbulent Flow in Ribbed Channels

N. D. Cardwell; Pavlos P. Vlachos; Karen A. Thole

Wall-mounted roughness features, such as ribs, are often placed along the walls of a channel to increase the convective surface area and to augment heat transfer and mixing by increasing turbulence. Depending on the relative roughness size and orientation, the ribs also have varying degrees of increased pressure losses. Designs that use ribs to promote heat transfer encompass the full range of having only a few streamwise ribs, which do not allow fully developed flow conditions, to multiple streamwise ribs, which do allow the flow to become fully developed. The majority of previous studies have focused on perturbing the geometry of the rib with little attention to the spatially and temporally varying flow characteristics and their dependence on the Reynolds number. A staggered rib-roughened channel study was performed using time-resolved digital particle image velocimetry (TRDPIV). Both the developing (entry region) and a fully developed region were interrogated for three Reynolds numbers of 2,500, 10,000, and 20,000. The results indicate that the flow was more sensitive to Reynolds number at the inlet than within the fully developed region. Despite having a similar mean-averaged flowfield structure over the full Reynolds number range investigated, the population and distribution of coherent structures and turbulent dissipation within the fully developed region were also found to be Reynolds number dependent. Exploring the time-accurate flow characteristics revealed that in addition to vortices shed from the rib shear layer, the region of the rib wake was governed by a periodic process of bursting of the wake vortices resulting in the intermittent ejection of the inter-rib recirculation region into the core flow. This periodic process was the driving mechanism resulting in mixing and heat transfer augmentation. A quadrant-splitting burst analysis was also performed to determine the characteristic frequency and duration of inter-rib bursting as well as the wake shedding frequency, both of which were determined to be Reynolds number dependent.


ASME-JSME-KSME 2011 Joint Fluids Engineering Conference: Volume 2, Fora | 2011

A Multi-Parametric Particle Pairing Algorithm for Particle Tracking Velocimetry in Single and Multiphase Flows

N. D. Cardwell; Pavlos P. Vlachos

The measurement of turbulent flows becomes problematic when considering a dispersed multiphase flow, which typically requires special techniques focusing on the simultaneous resolution of both the carrier and discrete phases present in the flowfield. The method presented in this paper, a multi-parametric particle pairing algorithm for particle tracking velocimetry (MP3-PTV), provides a powerful and flexible technique for the measurement of multiphase flows. Combined with a traditional Particle Image Velocimetry (PIV) system, the MP3-PTV employs a variable pair-matching algorithm which utilizes displacement preconditioning in combination with estimated particle size and intensity to match particle pairs between successive images. To improve the method’s efficiency, a new particle identification and segmentation routine was also developed. Validation of the new method was performed on two artificial data sets: a traditional single-phase flow published by the Visualization Society of Japan (VSJ) and an in-house generated multiphase flow having a bi-modal distribution of particles diameters. On the VSJ data set, the newly presented segmentation routine delivered a two-fold increase in identifying particles compared to other published methods. For the simulated multiphase flow data set, measurement efficiency of the dispersed phase improved from 9% to 41% for MP3-PTV as compared to traditional hybrid PTV.Copyright


ASME Turbo Expo 2009: Power for Land, Sea, and Air | 2009

A Method for Identifying and Visualizing Foreign Particle Motion Using Time Resolved Particle Tracking Velocimetry

N. D. Cardwell; Pavlos P. Vlachos; Karen A. Thole

Gas turbines for aircraft are designed for operation with a clean inlet air flow. This ideal operational condition is often violated during take-off and landing, where the probability of particle ingestion is high with sand and dirt being the most commonly observed foreign particles. Current research on particle ingestion has identified several mechanisms that contribute to performance degradation in the turbine: erosion of internal and external surfaces; and flow blockages of film-cooling holes and internal cooling passages. The focus of the study given in this paper is to present a method that identifies the motion of foreign particles within an internal ribbed passage. The method uses a high-resolution, flowfield interrogation method known as Time-Resolved Digital Particle Image Velocimetry (TRDPIV). Observations from the two-phase flows showed that particle collisions occurred more frequently on the upstream surface of the ribs, especially in the inlet region. Results from these collisions included substantial particle breakup and a particle rebounding phenomenon between the upper and lower walls. Comparisons are made to LES predicted particle trajectories indicating some agreement, but also phenomena that are not predicted due to the inherent assumption of the modeling.Copyright

Collaboration


Dive into the N. D. Cardwell's collaboration.

Top Co-Authors

Avatar

Karen A. Thole

Pennsylvania State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge