Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen D. Weynberg is active.

Publication


Featured researches published by Karen D. Weynberg.


PLOS ONE | 2010

The Taxonomic and Functional Diversity of Microbes at a Temperate Coastal Site: A ‘Multi-Omic’ Study of Seasonal and Diel Temporal Variation

Jack A. Gilbert; Dawn Field; Paul Swift; Simon Thomas; Denise Cummings; Ben Temperton; Karen D. Weynberg; Susan M. Huse; Margaret Hughes; Ian Joint; Paul J. Somerfield; Martin Mühling

How microbial communities change over time in response to the environment is poorly understood. Previously a six-year time series of 16S rRNA V6 data from the Western English Channel demonstrated robust seasonal structure within the bacterial community, with diversity negatively correlated with day-length. Here we determine whether metagenomes and metatranscriptomes follow similar patterns. We generated 16S rRNA datasets, metagenomes (1.2 GB) and metatranscriptomes (157 MB) for eight additional time points sampled in 2008, representing three seasons (Winter, Spring, Summer) and including day and night samples. This is the first microbial ‘multi-omic’ study to combine 16S rRNA amplicon sequencing with metagenomic and metatranscriptomic profiling. Five main conclusions can be drawn from analysis of these data: 1) Archaea follow the same seasonal patterns as Bacteria, but show lower relative diversity; 2) Higher 16S rRNA diversity also reflects a higher diversity of transcripts; 3) Diversity is highest in winter and at night; 4) Community-level changes in 16S-based diversity and metagenomic profiles are better explained by seasonal patterns (with samples closest in time being most similar), while metatranscriptomic profiles are better explained by diel patterns and shifts in particular categories (i.e., functional groups) of genes; 5) Changes in key genes occur among seasons and between day and night (i.e., photosynthesis); but these samples contain large numbers of orphan genes without known homologues and it is these unknown gene sets that appear to contribute most towards defining the differences observed between times. Despite the huge diversity of these microbial communities, there are clear signs of predictable patterns and detectable stability over time. Renewed and intensified efforts are required to reveal fundamental deterministic patterns in the most complex microbial communities. Further, the presence of a substantial proportion of orphan sequences underscores the need to determine the gene products of sequences with currently unknown function.


Environmental Microbiology | 2009

From small hosts come big viruses: the complete genome of a second Ostreococcus tauri virus, OtV-1.

Karen D. Weynberg; Michael J. Allen; Kevin E. Ashelford; David J. Scanlan; William H. Wilson

Ostreococcus tauri virus (OtV-1) is a large double-stranded DNA virus and a prospective member of the family Phycodnaviridae, genus Prasinovirus. OtV-1 infects the unicellular marine green alga O. tauri, the smallest known free-living eukaryote. Here we present the 191 761 base pair genome sequence of OtV-1, which has 232 putative protein-encoding and 4 tRNA-encoding genes. Approximately 31% of the viral gene products exhibit a similarity to proteins of known functions in public databases. These include a variety of unexpected genes, for example, a PhoH-like protein, a N-myristoyltransferase, a 3-dehydroquinate synthase, a number of glycosyltransferases and methyltransferases, a prolyl 4-hydroxylase, 6-phosphofructokinase and a total of 8 capsid proteins. A total of 11 predicted genes share homology with genes found in the Ostreococcus host genome. In addition, an intein was identified in the DNA polymerase gene of OtV-1. This is the first report of an intein in the genome of a virus that infects O. tauri. Fifteen core genes common to nuclear-cytoplasmic large dsDNA virus (NCLDV) genomes were identified in the OtV-1 genome. This new sequence data may help to redefine the classification of the core genes of these viruses and shed new light on their evolutionary history.


Journal of Virology | 2011

Genome sequence of Ostreococcus tauri virus OtV-2 throws light on the role of picoeukaryote niche separation in the ocean

Karen D. Weynberg; Michael J. Allen; Ilana C. Gilg; David J. Scanlan; William H. Wilson

ABSTRACT Ostreococcus tauri, a unicellular marine green alga, is the smallest known free-living eukaryote and is ubiquitous in the surface oceans. The ecological success of this organism has been attributed to distinct low- and high-light-adapted ecotypes existing in different niches at a range of depths in the ocean. Viruses have already been characterized that infect the high-light-adapted strains. Ostreococcus tauri virus (OtV) isolate OtV-2 is a large double-stranded DNA algal virus that infects a low-light-adapted strain of O. tauri and was assigned to the algal virus family Phycodnaviridae, genus Prasinovirus. Our working hypothesis for this study was that different viruses infecting high- versus low-light-adapted O. tauri strains would provide clues to propagation strategies that would give them selective advantages within their particular light niche. Sequence analysis of the 184,409-bp linear OtV-2 genome revealed a range of core functional genes exclusive to this low-light genotype and included a variety of unexpected genes, such as those encoding an RNA polymerase sigma factor, at least four DNA methyltransferases, a cytochrome b5 , and a high-affinity phosphate transporter. It is clear that OtV-2 has acquired a range of potentially functional genes from its host, other eukaryotes, and even bacteria over evolutionary time. Such piecemeal accretion of genes is a trademark of large double-stranded DNA viruses that has allowed them to adapt their propagation strategies to keep up with host niche separation in the sunlit layers of the oceanic environment.


Frontiers in Microbiology | 2014

Generating viral metagenomes from the coral holobiont.

Karen D. Weynberg; Elisha M. Wood-Charlson; Curtis A. Suttle; Madeleine J. H. van Oppen

Reef-building corals comprise multipartite symbioses where the cnidarian animal is host to an array of eukaryotic and prokaryotic organisms, and the viruses that infect them. These viruses are critical elements of the coral holobiont, serving not only as agents of mortality, but also as potential vectors for lateral gene flow, and as elements encoding a variety of auxiliary metabolic functions. Consequently, understanding the functioning and health of the coral holobiont requires detailed knowledge of the associated viral assemblage and its function. Currently, the most tractable way of uncovering viral diversity and function is through metagenomic approaches, which is inherently difficult in corals because of the complex holobiont community, an extracellular mucus layer that all corals secrete, and the variety of sizes and structures of nucleic acids found in viruses. Here we present the first protocol for isolating, purifying and amplifying viral nucleic acids from corals based on mechanical disruption of cells. This method produces at least 50% higher yields of viral nucleic acids, has very low levels of cellular sequence contamination and captures wider viral diversity than previously used chemical-based extraction methods. We demonstrate that our mechanical-based method profiles a greater diversity of DNA and RNA genomes, including virus groups such as Retro-transcribing and ssRNA viruses, which are absent from metagenomes generated via chemical-based methods. In addition, we briefly present (and make publically available) the first paired DNA and RNA viral metagenomes from the coral Acropora tenuis.


Environmental Microbiology | 2015

Metagenomic characterization of viral communities in corals: mining biological signal from methodological noise.

Elisha M. Wood-Charlson; Karen D. Weynberg; Curtis A. Suttle; Simon Roux; Madeleine J. H. van Oppen

Reef-building corals form close associations with organisms from all three domains of life and therefore have many potential viral hosts. Yet knowledge of viral communities associated with corals is barely explored. This complexity presents a number of challenges in terms of the metagenomic assessments of coral viral communities and requires specialized methods for purification and amplification of viral nucleic acids, as well as virome annotation. In this minireview, we conduct a meta-analysis of the limited number of existing coral virome studies, as well as available coral transcriptome and metagenome data, to identify trends and potential complications inherent in different methods. The analysis shows that the method used for viral nucleic acid isolation drastically affects the observed viral assemblage and interpretation of the results. Further, the small number of viral reference genomes available, coupled with short sequence read lengths might cause errors in virus identification. Despite these limitations and potential biases, the data show that viral communities associated with corals are diverse, with double- and single-stranded DNA and RNA viruses. The identified viruses are dominated by double-stranded DNA-tailed bacteriophages, but there are also viruses that infect eukaryote hosts, likely the endosymbiotic dinoflagellates, Symbiodinium spp., host coral and other eukaryotes in close association.


Scientific Reports | 2016

From cholera to corals: Viruses as drivers of virulence in a major coral bacterial pathogen.

Karen D. Weynberg; Christian R. Voolstra; Matthew J. Neave; Patrick Buerger; Madeleine J. H. van Oppen

Disease is an increasing threat to reef-building corals. One of the few identified pathogens of coral disease is the bacterium Vibrio coralliilyticus. In Vibrio cholerae, infection by a bacterial virus (bacteriophage) results in the conversion of non-pathogenic strains to pathogenic strains and this can lead to cholera pandemics. Pathogenicity islands encoded in the V. cholerae genome play an important role in pathogenesis. Here we analyse five whole genome sequences of V. coralliilyticus to examine whether virulence is similarly driven by horizontally acquired elements. We demonstrate that bacteriophage genomes encoding toxin genes with homology to those found in pathogenic V. cholerae are integrated in V. coralliilyticus genomes. Virulence factors located on chromosomal pathogenicity islands also exist in some strains of V. coralliilyticus. The presence of these genetic signatures indicates virulence in V. coralliilyticus is driven by prophages and other horizontally acquired elements. Screening for pathogens of coral disease should target conserved regions in these elements.


The ISME Journal | 2017

Evidence for a role of viruses in the thermal sensitivity of coral photosymbionts

Rachel A. Levin; Christian R. Voolstra; Karen D. Weynberg; Madeleine Josephine Henriette van Oppen

Symbiodinium, the dinoflagellate photosymbiont of corals, is posited to become more susceptible to viral infections when heat-stressed. To investigate this hypothesis, we mined transcriptome data of a thermosensitive and a thermotolerant type C1 Symbiodinium population at ambient (27 °C) and elevated (32°C) temperatures. We uncovered hundreds of transcripts from nucleocytoplasmic large double-stranded DNA viruses (NCLDVs) and the genome of a novel positive-sense single-stranded RNA virus (+ssRNAV). In the transcriptome of the thermosensitive population only, +ssRNAV transcripts had remarkable expression levels in the top 0.03% of all transcripts at 27 °C, but at 32 °C, expression levels of +ssRNAV transcripts decreased, while expression levels of anti-viral transcripts increased. In both transcriptomes, expression of NCLDV transcripts increased at 32 °C, but thermal induction of NCLDV transcripts involved in DNA manipulation was restricted to the thermosensitive population. Our findings reveal that viruses infecting Symbiodinium are affected by heat stress and may contribute to Symbiodinium thermal sensitivity.


Frontiers in Marine Science | 2015

The ReFuGe 2020 Consortium—using “omics” approaches to explore the adaptability and resilience of coral holobionts to environmental change

Christian R. Voolstra; David J. Miller; Mark A. Ragan; Ary A. Hoffmann; Ove Hoegh-Guldberg; David G. Bourne; Eldon E. Ball; Hua Ying; Sylvain Forêt; Shunichi Takahashi; Karen D. Weynberg; Madeleine J. H. van Oppen; Kathleen M. Morrow; Cheong Xin Chan; Nedeljka N. Rosic; William Leggat; Susanne Sprungala; Michael Imelfort; Gene W. Tyson; Karin S. Kassahn; Petra Lundgren; Roger Beeden; Timothy Ravasi; Michael L. Berumen; Eva Abal; Theresa Fyffe

Human-induced environmental changes have been linked directly with loss of biodiversity. Coral reefs, which have been severely impacted by anthropogenic activities over the last few decades, exemplify this global problem and provide an opportunity to develop research addressing key knowledge gaps through ‘omics’-based approaches. While many stressors, e.g. global warming, ocean acidification, overfishing and coastal development have been identified, there is an urgent need to understand how corals function at a basic level in order to conceive strategies for mitigating future reef loss. In this regard, availability of fully sequenced genomes has been immensely valuable in providing answers to questions of organismal biology. Given that corals are metaorganisms comprised of the coral animal host, its intracellular photosynthetic algae, and associated microbiota (i.e. bacteria, archaea, fungi, viruses), these efforts must focus on entire coral holobionts. The Reef Future Genomics 2020 (ReFuGe 2020) consortium has formed to sequence hologenomes of ten coral species representing different physiological or functional groups to provide foundation data for coral reef adaptation research that is freely available to the research community.


Coral Reefs | 2017

Prevalent and persistent viral infection in cultures of the coral algal endosymbiont Symbiodinium

Karen D. Weynberg; Matthew J. Neave; Peta L. Clode; Christian R. Voolstra; Christopher Brownlee; Patrick W. Laffy; Nicole S. Webster; Rachel A. Levin; Elisha M. Wood-Charlson; Madeleine J. H. van Oppen

Reef corals are under threat from bleaching and disease outbreaks that target both the host animal and the algal symbionts within the coral holobiont. A viral origin for coral bleaching has been hypothesized, but direct evidence has remained elusive. Using a multifaceted approach incorporating flow cytometry, transmission electron microscopy, DNA and RNA virome sequencing, we show that type C1 Symbiodinium cultures host a nucleocytoplasmic large double-stranded DNA virus (NCLDV) related to Phycodnaviridae and Mimiviridae, a novel filamentous virus of unknown phylogenetic affiliation, and a single-stranded RNA virus related to retroviruses. We discuss implications of these findings for laboratory-based experiments using Symbiodinium cultures.


Scientific Reports | 2017

Unraveling the microbial processes of black band disease in corals through integrated genomics

Yui Sato; Edmund Y. S. Ling; Dmitrij Turaev; Patrick W. Laffy; Karen D. Weynberg; Thomas Rattei; Bette L. Willis; David G. Bourne

Coral disease outbreaks contribute to the ongoing degradation of reef ecosystems, however, microbial mechanisms underlying the onset and progression of most coral diseases are poorly understood. Black band disease (BBD) manifests as a cyanobacterial-dominated microbial mat that destroys coral tissues as it rapidly spreads over coral colonies. To elucidate BBD pathogenesis, we apply a comparative metagenomic and metatranscriptomic approach to identify taxonomic and functional changes within microbial lesions during in-situ development of BBD from a comparatively benign stage termed cyanobacterial patches. Results suggest that photosynthetic CO2-fixation in Cyanobacteria substantially enhances productivity of organic matter within the lesion during disease development. Photosynthates appear to subsequently promote sulfide-production by Deltaproteobacteria, facilitating the major virulence factor of BBD. Interestingly, our metagenome-enabled transcriptomic analysis reveals that BBD-associated cyanobacteria have a putative mechanism that enables them to adapt to higher levels of hydrogen sulfide within lesions, underpinning the pivotal roles of the dominant cyanobacterium within the polymicrobial lesions during the onset of BBD. The current study presents sequence-based evidence derived from whole microbial communities that unravel the mechanism of development and progression of BBD.

Collaboration


Dive into the Karen D. Weynberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elisha M. Wood-Charlson

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

Patrick Buerger

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

Patrick W. Laffy

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar

Michael J. Allen

Plymouth Marine Laboratory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David G. Bourne

Australian Institute of Marine Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christian R. Voolstra

King Abdullah University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

William H. Wilson

Bigelow Laboratory For Ocean Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge