Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen E. Frey is active.

Publication


Featured researches published by Karen E. Frey.


Science | 2006

A Major Ecosystem Shift in the Northern Bering Sea

Jacqueline M. Grebmeier; James E. Overland; Sue E. Moore; Ed Farley; Eddy C. Carmack; Lee W. Cooper; Karen E. Frey; John H. Helle; Fiona A. McLaughlin; S. Lyn McNutt

Until recently, northern Bering Sea ecosystems were characterized by extensive seasonal sea ice cover, high water column and sediment carbon production, and tight pelagic-benthic coupling of organic production. Here, we show that these ecosystems are shifting away from these characteristics. Changes in biological communities are contemporaneous with shifts in regional atmospheric and hydrographic forcing. In the past decade, geographic displacement of marine mammal population distributions has coincided with a reduction of benthic prey populations, an increase in pelagic fish, a reduction in sea ice, and an increase in air and ocean temperatures. These changes now observed on the shallow shelf of the northern Bering Sea should be expected to affect a much broader portion of the Pacific-influenced sector of the Arctic Ocean.


Science | 2012

Massive phytoplankton blooms under Arctic Sea ice

Kevin R. Arrigo; Donald K. Perovich; Robert S. Pickart; Zachary W. Brown; Gert L. van Dijken; Kate E. Lowry; Matthew M. Mills; Molly A. Palmer; William M. Balch; Frank Bahr; Nicholas R. Bates; Claudia R. Benitez-Nelson; Bruce C. Bowler; Emily F. Brownlee; Jens K. Ehn; Karen E. Frey; Rebecca Garley; Samuel R. Laney; Laura C. Lubelczyk; Jeremy T. Mathis; A. Matsuoka; B. Greg Mitchell; G. W. K. Moore; E. Ortega-Retuerta; Sharmila Pal; Chris Polashenski; Rick A. Reynolds; Brian Schieber; Heidi M. Sosik; Michael Stephens

In midsummer, diatoms have taken advantage of thinning ice cover to feed in nutrient-rich waters. Phytoplankton blooms over Arctic Ocean continental shelves are thought to be restricted to waters free of sea ice. Here, we document a massive phytoplankton bloom beneath fully consolidated pack ice far from the ice edge in the Chukchi Sea, where light transmission has increased in recent decades because of thinning ice cover and proliferation of melt ponds. The bloom was characterized by high diatom biomass and rates of growth and primary production. Evidence suggests that under-ice phytoplankton blooms may be more widespread over nutrient-rich Arctic continental shelves and that satellite-based estimates of annual primary production in these waters may be underestimated by up to 10-fold.


Quaternary Science Reviews | 2003

Peatlands of the Western Siberian lowlands: current knowledge on zonation, carbon content and Late Quaternary history

K. V. Kremenetski; A.A. Velichko; Olga Borisova; Glen M. MacDonald; Laurence C. Smith; Karen E. Frey; Lyobov A Orlova

The Western Siberian lowlands (WSL) are the world’s largest high-latitude wetland, and possess over 900,000 km 2 of peatlands. The peatlands of the WSL are of major importance to high-latitude hydrology, carbon storage and environmental history. Analysis of the existing Russian data suggests that the mean depth of peat accumulation in the WSL is 256 cm and the total amount of carbon stored there may exceed 53,836 million metric tons. A synthesis of published and unpublished radiocarbon dates indicates that the peatlands first developed at the end of the Last Glacial, with a rapid phase of initiation between 11,000 and 10,000 cal yr BP. Initiation slowed after 8000 cal yr BP and reached a nadir at 4000 cal yr BP. There has been renewed initiation, particularly south of 621N, following 4000 cal yr BP. The initial development of peatlands in the WSL corresponds with the warming at the close of the Pleistocene. Cooling after 4000 Cal yr BP has likely led to increased permafrost and increased peatland development particularly in central and southern regions. Cold and dry conditions in the far north may have inhibited peatland formation in the late Holocene. r 2002 Elsevier Science Ltd. All rights reserved.


Eos, Transactions American Geophysical Union | 2010

Biological Response to Recent Pacific Arctic Sea Ice Retreats

Jacqueline M. Grebmeier; Sue E. Moore; James E. Overland; Karen E. Frey; Rolf Gradinger

Although recent major changes in the physical domain of the Arctic region, such as extreme retreats of summer sea ice since 2007, are well documented, large uncertainties remain regarding responses in the biological domain. In the Pacific Arctic north of Bering Strait, reduction in sea ice extent has been seasonally asymmetric, with minimal changes until the end of June and delayed sea ice formation in late autumn. The effect of extreme ice retreats and seasonal asymmetry in sea ice loss on primary production is uncertain, with no clear shift over time (2003–2008) in satellite-derived chlorophyll concentrations. However, clear changes have occurred during summer in species ranges for zooplankton, bottom-dwelling organisms (benthos), and fish, as well as through the loss of sea ice as habitat and platform for marine mammals.


Journal of Geophysical Research | 2007

Impacts of climate warming and permafrost thaw on the riverine transport of nitrogen and phosphorus to the Kara Sea

Karen E. Frey; James W. McClelland; Robert M. Holmes; Laurence C. Smith

[1] Measurements of nitrogen and phosphorus (N and P) concentrations from previously unstudied streams and rivers throughout west Siberia suggest that climate warming and/or associated permafrost thaw will likely amplify the transport of N and P to the Kara Sea and adjacent Arctic Ocean. We present concentrations of dissolved organic nitrogen (DON), ammonium (NH4-N), nitrate (NO3-N), total dissolved nitrogen (TDN), and total dissolved phosphorus (TDP) from 96 streams and rivers within the Ob’-Irtysh, Nadym, and Pur river drainage basins. The sampled sites span � 10 6 km 2 , a large climatic gradient (� 55N–68N), and include 41 cold, permafrost-influenced and 55 warm, permafrost-free watersheds. Concentrations for all measured watersheds average 765 m gL � 1 (DON), 19.3 m gL � 1 (NH4-N), 36.7 m gL � 1 (NO3-N), 821 m gL � 1 (TDN), and 104 m gL � 1 (TDP). Our results show no statistically significant difference in dissolved inorganic N (NH4-N and NO3-N) between permafrost-influenced and permafrost-free watersheds. However, we do find significantly higher concentrations of DON, TDN, and TDP in permafrost-free watersheds (increasing as a function of watershed peatland coverage) than in permafrost-influenced watersheds. When combined with climate model simulations, these relationships enable a simple ‘‘space-for-time’’ substitution to estimate possible increases in N and P release from west Siberia by the year 2100. Results suggest that predicted climate warming in west Siberia will be associated with � 32–53% increases in DON concentrations, � 30–50% increases in TDN concentrations, and 29–47% increases in TDP concentrations as averaged across the region. While such increases in N and P are unlikely to significantly influence primary production in the Kara Sea as a whole, they will likely have large local impacts in the Ob’ and Yenisey bays and nearshore environments.


Polar Research | 2003

Recent temperature and precipitation increases in west siberia and their association with the Arctic Oscillation

Karen E. Frey; Laurence C. Smith

Surface air temperature and precipitation records for the years 1958-1999 from ten meteorological stations located throughout West Siberia are used to identify climatic trends and determine to what extent these trends are potentially attributable to the Arctic Oscillation (AO). Although recent changes in atmospheric variability are associated with broad Arctic climate change, West Siberia appears particularly susceptible to warming. Furthermore, unlike most of the Arctic, moisture transport in the region is highly variable. The records show that West Siberia is experiencing significant warming and notable increases in precipitation, likely driven, in part, by large-scale Arctic atmospheric variability. Because this region contains a large percentage of the worlds peatlands and contributes a significant portion of the total terrestrial freshwater flux to the Arctic Ocean, these recent climatic trends may have globally significant repercussions. The most robust patterns found are strong and prevalent springtime warming, winter precipitation increases, and strong association of non-summer air temperatures with the AO. Warming rates for both spring (0.5-0.8 °C/decade) and annual (0.3-0.5°C/decade) records are statistically significant for nine often stations. On average, the AO is linearly congruent with 96% (winter), 19% (spring), 0% (summer), 67% (autumn) and 53% (annual) of the warming found in this study. Significant trends in precipitation occur most commonly during winter, when four of ten stations exhibit significant increases (4-13 %/decade). The AO may play a lesser role in precipitation variability and is linearly congruent with only 17% (winter), 13% (spring), 12% (summer), 1% (autumn) and 26% (annual) of precipitation trends.


Geophysical Research Letters | 2013

Satellite-based estimates of Antarctic surface meltwater fluxes

Luke D. Trusel; Karen E. Frey; Sarah B. Das; Peter Kuipers Munneke; Michiel R. van den Broeke

This study generates novel satellite-derived estimates of Antarctic-wide annual (1999–2009) surface meltwater production using an empirical relationship between radar backscatter from the QuikSCAT (QSCAT) satellite and melt calculated from in situ energy balance observations. The resulting QSCAT-derived melt fluxes significantly agree with output from the regional climate model RACMO2.1 and with independent ground-based observations. The highresolution (4.45 km) QSCAT-based melt fluxes uniquely detect interannually persistent and intense melt (>400mm water equivalent (w.e.) year 1) on interior Larsen C Ice Shelf that is not simulated by RACMO2.1. This supports a growing understanding of the importance of a fohn effect in this region and quantifies the resulting locally enhanced melting that is spatially consistent with recently observed Larsen C thinning. These new results highlight important cryosphere-climate interactions and processes that are presently not fully captured by the coarser-resolution (27 km) regional climate model. Citation: Trusel, L. D., K. E. Frey, S. B. Das, P. Kuipers Munneke, and M. R. van den Broeke (2013), Satellite-based estimates of Antarctic surface meltwater fluxes, Geophys. Res. Lett., 40, 6148–6153, doi:10.1002/2013GL058138.


Journal of Geophysical Research | 2013

Ice sheet record of recent sea-ice behavior and polynya variability in the Amundsen Sea, West Antarctica

Alison S. Criscitiello; Sarah B. Das; Matthew J. Evans; Karen E. Frey; Howard Conway; Ian Joughin; Brooke Medley; Eric J. Steig

investigation of how regional SIC is recorded in the ice-sheet stratigraphy. Over the period 2002–2010 we find that the ice-sheet chemistry is significantly correlated with SIC variability within the AS and Pine Island Bay polynyas. Based on this result, we evaluate the use of icecore chemistry as a proxy for interannual polynya variability in this region, one of the largest and most persistent polynya areas in Antarctica. MSA concentrations correlate strongly with summer SIC within the polynya regions, consistent with MSA at this site being derived from marine biological productivity during the spring and summer. Cl – concentrations correlate strongly with winter SIC within the polynyas as well as some regions outside the polynyas, consistent with Cl – at this site originating primarily from winter sea-ice formation. Spatial correlations were generally insignificant outside of the polynya areas, with some notable exceptions. Ice-core glaciochemical records from this dynamic region thus may provide a proxy for reconstructing AS and Pine Island Bay polynya variability prior to the satellite era.


Journal of Climate | 2014

Tropical Pacific Influence on the Source and Transport of Marine Aerosols to West Antarctica

Alison S. Criscitiello; Sarah B. Das; Kristopher B. Karnauskas; Matthew J. Evans; Karen E. Frey; Ian Joughin; Eric J. Steig; Joseph R. McConnell; Brooke Medley

AbstractThe climate of West Antarctica is strongly influenced by remote forcing from the tropical Pacific. For example, recent surface warming over West Antarctica reflects atmospheric circulation changes over the Amundsen Sea, driven by an atmospheric Rossby wave response to tropical sea surface temperature (SST) anomalies. Here, it is demonstrated that tropical Pacific SST anomalies also influence the source and transport of marine-derived aerosols to the West Antarctic Ice Sheet. Using records from four firn cores collected along the Amundsen coast of West Antarctica, the relationship between sea ice–modulated chemical species and large-scale atmospheric variability in the tropical Pacific from 1979 to 2010 is investigated. Significant correlations are found between marine biogenic aerosols and sea salts, and SST and sea level pressure in the tropical Pacific. In particular, La Nina–like conditions generate an atmospheric Rossby wave response that influences atmospheric circulation over Pine Island Bay...


Archive | 2014

Recent Variability in Sea Ice Cover, Age, and Thickness in the Pacific Arctic Region

Karen E. Frey; James A. Maslanik; Jaclyn Clement Kinney; Wieslaw Maslowski

Over the past several decades, there has been a fundamental shift in sea ice cover, age, and thickness across the Pacific Arctic Region (PAR). Satellite data reveal that trends in sea ice cover have been spatially heterogeneous, with significant declines in the Chukchi Sea, slight declines in the Bering Strait region, yet increases in the northern Bering Sea south of St. Lawrence Island. Declines in the annual persistence of seasonal sea ice cover in the Chukchi Sea and Bering Strait region are due to both earlier sea ice breakup and later sea ice formation. However, increases in the persistence of seasonal sea ice cover south of St. Lawrence Island occur primarily owing to earlier sea ice formation during winter months. Satellite-based observations of sea ice age along with modeled sea ice thickness provide further insight into recent sea ice variability throughout the PAR, with widespread transitions towards younger, thinner ice. Investigation of sea ice cover, age, and thickness in concert provides critical insight into ongoing changes in the total volume of ice and therefore the future trajectory of sea ice throughout the PAR, as well as its likely impacts on ecosystem productivity across all trophic levels.

Collaboration


Dive into the Karen E. Frey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert M. Holmes

Woods Hole Research Center

View shared research outputs
Top Co-Authors

Avatar

Jeremy T. Mathis

National Oceanic and Atmospheric Administration

View shared research outputs
Top Co-Authors

Avatar

Lee W. Cooper

University of Maryland Center for Environmental Science

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine Michel

Fisheries and Oceans Canada

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luke D. Trusel

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

Sarah B. Das

Woods Hole Oceanographic Institution

View shared research outputs
Top Co-Authors

Avatar

E. B. Bulygina

Woods Hole Research Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge