Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen Forberich is active.

Publication


Featured researches published by Karen Forberich.


Advanced Materials | 2010

Influence of the bridging atom on the performance of a low-bandgap bulk heterojunction solar cell.

Markus Scharber; Markus Koppe; Jia Gao; Fabrizio Cordella; Maria Antonietta Loi; Patrick Denk; Mauro Morana; Hans-Joachim Egelhaaf; Karen Forberich; Gilles Dennler; Russ Gaudiana; Dave Waller; Zhengguo Zhu; Xiaobo Shi; Christoph J. Brabec

Bulk heterojunction solar cells have attracted considerable attention over the past several years due to their potential for low-cost photovoltaic technology. The possibility of manufacturing modules via a standard printing/coating method in a roll-to-roll process in combination with the use of low-cost materials will lead to a watt-peak price of less than 1 US


Science | 2009

Solar Power Wires Based on Organic Photovoltaic Materials

Michael Lee; Robert D. Eckert; Karen Forberich; Gilles Dennler; Christoph J. Brabec; Russell Gaudiana

within the next few years. [1] Despite the low-cost potential, the power conversion efficiency of bulk heterojunction devices is low compared to inorganic solar cells. Efficiencies in the range of 5‐6% have been certified at NREL and AIST usually on devices with small active areas. [2] The current understanding of bulk heterojunction solar cells suggests that the maximum efficiency is in the range of 10‐12%. [3] Several reasons for the power conversion efficiency limitation have been identified. [1] Some of the prerequisites for achieving highest efficiencies are donor and acceptor materials with optimized energy levels [highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO)], efficient charge transport in the donor‐acceptor blend, efficient charge generation and limited recombination losses. Power conversion efficiency is strongly dependent on charge transport and charge generation, which are dominated by the phase behavior of the donor and acceptor molecules. The resulting, and often unfavorable, nanomorphology of this two-component blend limits the power conversion efficiency of bulk heterojunction solar cells. Precise control of the nanomorphology is very difficult and has been achieved only for a few systems. [4‐6] The relation between the chemical structure of donor and acceptor materials and the nanomorphology that they form when they are blended is currently not well understood, and as will be shown in this paper, minor changes in the chemical structure can cause major changes in the performance of the materials in organic solar cells. In this work we demonstrate the effect of replacing a carbon atom with a silicon atom on the main chain of the conjugated polymer. The approach has been used previously, and promising materials for field-effect transistors and organic solar cells have been demonstrated. [7‐9] We find that making this simple substitution in poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4b 0 ]-dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT) yields a polysilole, e.g., poly[(4,4 0 -bis(2-ethylhexyl)dithieno[3,2b:2 0 ,3 0 -d]silole)-2,6-diyl-alt-(4,7-bis(2-thienyl)-2,1,3-benzothiadiazole)-5,5 0 -diyl] (Si-PCPDTBT), with a higher crystallinity, improved charge transport properties, reduced bimolecular recombination, and a reduced formation of charge transfer complexes when blended with a fullerene derivative. This silole-based polymer is found to form a highly functional nanomorphology when blended with [6,6]-phenyl C71-butyric acid methyl ester (C70-PCBM), and solar cells prepared using this blend gave efficiencies of 5.2%, certified by the National Renewable Energy Laboratory. [1] The presented polymer is the first low-bandgap semiconducting polymer to have a certified efficiency of over 5%. The chemical structure of the subject polymer is shown in Figure 1. The material was synthesized following the procedure described previously. [10] The synthesis and properties of the carbon-bridged polymer have been described before. [11,12] Figure 2a shows the absorbance and photoluminescence (PL) spectra of a thin solid film of the pristine Si-bridged polymer and


Journal of Applied Physics | 2007

Angle dependence of external and internal quantum efficiencies in bulk-heterojunction organic solar cells

Gilles Dennler; Karen Forberich; Markus Scharber; Christoph J. Brabec; Igor Tomiš; Kurt Hingerl; T. Fromherz

Organic photovoltaics in a flexible wire format has potential advantages that are described in this paper. A wire format requires long-distance transport of current that can be achieved only with conventional metals, thus eliminating the use of transparent oxide semiconductors. A phase-separated, photovoltaic layer, comprising a conducting polymer and a fullerene derivative, is coated onto a thin metal wire. A second wire, coated with a silver film, serving as the counter electrode, is wrapped around the first wire. Both wires are encased in a transparent polymer cladding. Incident light is focused by the cladding onto to the photovoltaic layer even when it is completely shadowed by the counter electrode. Efficiency values of the wires range from 2.79% to 3.27%.


Journal of Applied Physics | 2007

Design of efficient organic tandem cells: On the interplay between molecular absorption and layer sequence

Gilles Dennler; Karen Forberich; Tayebeh Ameri; Christoph Waldauf; Patrick Denk; Christoph J. Brabec; Kurt Hingerl; Alan J. Heeger

The realization of highly efficient organic solar cells requires the understanding and the optimization of the light path in the photoactive layer. We present in this article our approach to measure and model the optical properties of our bulk-heterojunction devices, and to control them in order to enhance the photovoltaic performances. We report our recent observations on the dependence of the external quantum efficiency (EQE) on the incidence angle of the light, and our results on the determination of internal quantum efficiency based on EQE measurement and optical modeling cross-checked by reflection measurements. We investigate poly(3-hexylthiophene): 1-(3-methoxy-carbonyl) propyl-1-phenyl[6,6]C61 based solar cells with two different thicknesses of the active layer (170 and 880nm), and show that in the thin ones the absorption is enhanced for oblique incident radiation.


Journal of Applied Physics | 2008

Realization, characterization, and optical modeling of inverted bulk-heterojunction organic solar cells

Tayebeh Ameri; Gilles Dennler; Christoph Waldauf; Patrick Denk; Karen Forberich; Markus Scharber; Christoph J. Brabec; Kurt Hingerl

We have carried out detailed optical simulations of tandem solar cells based on the following organic semiconductors: poly(3-hexylthiophene) (P3HT), poly[2,6-(4,4-bis-(2-ethylhexyl)-4H- cyclopenta[2,1-b;3,4-b′]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)] (PCPDTBT), 1-(3- methoxycarbonyl) propyl-1-phenyl[6,6] C61 (PC60BM), and 1-(3-methoxycarbonyl) propyl-1- phenyl[6,6] C71 (PC70BM). We demonstrate that out of the many possible combinations of the component materials, one specific combination emerges as the best to reduce the spectral overlap of the two bulk heterojunction blends and thereby to ensure an optimized short-circuit current density (Jsc). Furthermore, the calculations allow us to predict the maximum Jsc achievable in tandem cells based on P3HT and PCPDTBT. Finally, we show that the efficient tandem cell realized and described recently by Kim et al. [Science 317, 222 (2007)] ensures balanced absorption in the top and bottoms cells.


Advanced Materials | 2016

Overcoming the Interface Losses in Planar Heterojunction Perovskite-Based Solar Cells.

Yi Hou; Wei Chen; Derya Baran; Tobias Stubhan; Norman A. Luechinger; Benjamin Hartmeier; Moses Richter; Jie Min; Shi Chen; Cesar Omar Ramirez Quiroz; Ning Li; Hong Zhang; Thomas Heumueller; Gebhard J. Matt; Andres Osvet; Karen Forberich; Zhi-Guo Zhang; Yongfang Li; Benjamin Winter; Peter Schweizer; Erdmann Spiecker; Christoph J. Brabec

Inverted bulk-heterojunction organic solar cells (OSCs) using solution-processed layers possess significant advantages compared to the usual noninverted devices. To investigate the full potential of this type of OSC, we have carried out some optical modeling by rigorous coupled wave analysis. The influence of the thickness of several different layers in the device has been quantified, as well as the maximum possible number of photons absorbed in the poly(3-hexyltiophene):[6,6]-phenyl-C61-butyric acid methyl ester active layer for both conventional and inverted structures. It appears that the thickness of the hole injecting layer placed in front of the metallic mirror can influence the electromagnetic field distribution in the OSC, but no additional beneficial optical spacer effect is observed. The thickness of the electron injecting layer deposited on the semitransparent electrode also has a negligible influence on the photons absorbed in the active layer for the inverted structure.


Energy and Environmental Science | 2013

Towards 15% energy conversion efficiency: a systematic study of the solution-processed organic tandem solar cells based on commercially available materials

Ning Li; Derya Baran; Karen Forberich; Florian Machui; Tayebeh Ameri; Mathieu Turbiez; Miguel Carrasco-Orozco; Martin Drees; Antonio Facchetti; Frederik C. Krebs; Christoph J. Brabec

UNLABELLED A scalable, hysteresis-free and planar architecture perovskite solar cell is presented, employing a flame spray synthesized low-temperature processed NiO (LT-NiO) as hole-transporting layer yielding efficiencies close to 18%. Importantly, it is found that LT-NiO boosts the limits of open-circuit voltages toward an impressive non-radiative voltage loss of 0.226 V only, whereas PEDOT PSS suffers from significant large non-radiative recombination losses.


Energy and Environmental Science | 2016

Highly efficient, large area, roll coated flexible and rigid OPV modules with geometric fill factors up to 98.5% processed with commercially available materials

Luca Lucera; Florian Machui; Peter Kubis; H.D. Schmidt; Jens Adams; Sebastian Strohm; Taimoor Ahmad; Karen Forberich; H.-J. Egelhaaf; Christoph J. Brabec

Owing to the lack of scalable high performance donor materials, studies on mass-produced organic photovoltaic (OPV) devices lag far behind that on lab-scale devices. In this work, we choose 6 already commercially available conjugated polymers and systematically investigate their potential in organic tandem solar cells. All the devices are processed under environmental conditions using doctor-blading, which is highly compatible with mass-production coating technologies. Power conversion efficiencies (PCE) of 6–7% are obtained for OPV devices based on different active layers. Optical simulations based on experimental data are performed for all realized tandem solar cells. An efficiency potential of ∼10% is estimated for these compounds in combination with phenyl-C61-butyric acid methyl ester (PCBM) as an acceptor. In addition, we assume a hypothetical, optimized acceptor to understand the limitation of donors. It is suggested that a PCE of >14% is realistic for tandem solar cells based on these commercially available donor materials. Along with the demonstration of novel intermediate layers we believe that this systematic study provides valuable insight for those attempting to realize the high efficiency potential of tandem architectures.


Journal of Materials Chemistry | 2013

Overcoming interface losses in organic solar cells by applying low temperature, solution processed aluminum-doped zinc oxide electron extraction layers

Tobias Stubhan; Ivan Litzov; Ning Li; Michael Salinas; Matthias Steidl; Gerhard Sauer; Karen Forberich; Gebhard J. Matt; Marcus Halik; Christoph J. Brabec

Highly efficient, large area OPV modules achieving full area efficiencies of up to 93% of the reference small area cells are reported. The way to a no-loss up-scaling process is highlighted: photoelectrical conversion efficiencies of 5.3% are achieved on rigid modules and of 4.2% on flexible, roll coated ones, employing a commercially available photoactive material. Exceptionally high geometric fill factors (98.5%), achieved via structuring by ultrashort laser pulses, with interconnection widths below 100 μm are demonstrated.


ACS Applied Materials & Interfaces | 2014

Fully Solution-Processing Route toward Highly Transparent Polymer Solar Cells

Fei Guo; Peter Kubis; Tobias Stubhan; Ning Li; Derya Baran; Thomas Przybilla; Erdmann Spiecker; Karen Forberich; Christoph J. Brabec

Intrinsic zinc oxide (ZnO) is widely used as an electron extraction layer (EEL) for inverted polymer solar cells. Despite the excellent device performance, a major drawback for large area production is its low conductivity. Using microscopic simulations, we derived a technically reasonable threshold value of 10−3 S cm−1 for the conductivity required to overcome transport limitations. For conductivity values typical for ZnO we observed the interface layer thickness restriction at only a few tens of nanometers, either as a fill factor drop due to serial resistance, eventually accompanied by a second diode behavior, or by the need for light soaking. Higher conductive aluminum-doped zinc oxide (AZO), which was introduced earlier, meets the desired conductivity threshold, however, at the cost of high temperature processing. High annealing temperatures (>150 °C) significantly improve the electrical properties of ZnO, but prohibit processing on plastic substrates or organic active layers. Here we report on AZO layers from a sol–gel precursor, which has been already reported to give sufficiently high conductivities at lower processing temperatures (<150 °C). We investigate the influence of different precursor compositions on the electrical properties of the thin films and their performance in inverted poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PCBM) solar cells. Low temperature AZO layers with thicknesses up to 680 nm maintained comparable performance to devices with thin AZO layers.

Collaboration


Dive into the Karen Forberich's collaboration.

Top Co-Authors

Avatar

Christoph J. Brabec

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Erdmann Spiecker

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Fei Guo

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Anastasiia Solodovnyk

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Carina Bronnbauer

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Andres Osvet

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Tayebeh Ameri

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Ning Li

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar

Peter Kubis

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge