Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen Gertz is active.

Publication


Featured researches published by Karen Gertz.


Stroke | 2000

Atorvastatin Upregulates Type III Nitric Oxide Synthase in Thrombocytes, Decreases Platelet Activation, and Protects From Cerebral Ischemia in Normocholesterolemic Mice

Ulrich Laufs; Karen Gertz; Paul H. Huang; Georg Nickenig; Michael Böhm; Ulrich Dirnagl; Matthias Endres

Background and Purpose Thrombosis superimposed on atherosclerosis causes approximately two thirds of all brain infarctions. We previously demonstrated that statins protect from cerebral ischemia by upregulation of endothelial type III nitric oxide synthase (eNOS), but the downstream mechanisms have not been determined. Therefore, we investigated whether antithrombotic effects contribute to stroke protection by statins. Methods 129/SV wild-type and eNOS knockout mice were treated with atorvastatin for 14 days (0.5, 1, and 10 mg/kg). eNOS mRNA from aortas and platelets was measured by reverse-transcriptase polymerase chain reaction. Platelet factor 4 (PF 4) and &bgr;-thromboglobulin (&bgr;-TG) in the plasma were quantified by ELISA. Transient cerebral ischemia was induced by filamentous occlusion of the middle cerebral artery followed by reperfusion. Results Stroke volume after 1-hour middle cerebral artery occlusion/23-hour reperfusion was significantly reduced by 38% in atorvastatin-treated animals (10 mg/kg) compared with controls. Serum cholesterol levels were not affected by the treatment. eNOS mRNA was significantly upregulated in a dose-dependent manner in aortas and in thrombocytes of statin-treated mice compared with controls. Moreover, indices of platelet activation in vivo, ie, plasma levels of PF 4 and &bgr;-TG, were dose-dependently downregulated in the treatment group. Surprisingly, atorvastatin-treatment did not influence PF 4 and &bgr;-TG levels in eNOS knockout mice. Conclusions The synthetic 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitor atorvastatin upregulates eNOS in thrombocytes, decreases platelet activation in vivo, and protects from cerebral ischemia in normocholesterolemic mice. Antithrombotic and stroke-protective effects of statins are mediated in part by eNOS upregulation. Our results suggest that statins may provide a novel prophylactic treatment strategy independent of serum cholesterol levels.


Annals of Neurology | 2003

Mechanisms of stroke protection by physical activity

Matthias Endres; Karen Gertz; Ute Lindauer; Juri Katchanov; Jörg Schultze; Helmut Schröck; Georg Nickenig; Wolfgang Kuschinsky; Ulrich Dirnagl; Ulrich Laufs

Regular physical activity is associated with a decrease of cerebrovascular and cardiovascular events, which may relate to enhanced endothelium‐dependent vasodilation. Here, we provide evidence that physical activity protects against ischemic stroke via mechanisms related to the upregulation of endothelial nitric oxide synthase (eNOS) in the vasculature. Voluntary training on running wheels or exercise on a treadmill apparatus for 3 weeks, respectively, reduced cerebral infarct size and functional deficits, improved endothelium‐dependent vasorelaxation, and augmented cerebral blood flow in wild‐type mice. The neuroprotective effects of physical training were completely absent in eNOS‐deficient mice, indicating that the enhanced eNOS activity by physical training was the predominant mechanism by which this modality protects against cerebral injury. Our results suggest that physical activity not only decreases stroke risk, but also provides a prophylactic treatment strategy for increasing blood flow and reducing brain injury during cerebral ischemia.


Circulation | 2000

Suppression of Endothelial Nitric Oxide Production After Withdrawal of Statin Treatment Is Mediated by Negative Feedback Regulation of Rho GTPase Gene Transcription

Ulrich Laufs; Matthias Endres; Florian Custodis; Karen Gertz; Georg Nickenig; James K. Liao; Michael Böhm

Background—Statins improve endothelial function by upregulating endothelial nitric oxide (NO) production that is mediated by inhibiting the isoprenylation of rho GTPase. Withdrawal of statin treatment could suppress endothelial NO production and may impair vascular function. Methods and Results—To test this hypothesis, mice were treated for 14 days with 10 mg/kg atorvastatin per day; this led to the upregulation of endothelial NO synthase expression and activity by 2.3- and 3-fold, respectively. Withdrawal of statins resulted in a dramatic, 90% decrease of NO production after 2 days. In mouse aortas and cultured endothelial cells, statins upregulated the expression of rho GTPase in the cytosol, but statins blocked isoprenoid-dependent rho membrane translocation and GTP-binding activity. Inhibiting the downstream targets of rho showed that rho expression is controlled by a negative feedback mechanism mediated by the actin cytoskeleton. Measuring rho mRNA half-life and nuclear run-on assays demonstrated that statins or disruption of actin stress fibers increased rho gene transcription but not rho mRNA stability. Therefore, treatment with statins leads to the accumulation of nonisoprenylated rho in the cytosol. Withdrawing statin treatment restored the availability of isoprenoids and resulted in a massive membrane translocation and activation of rho, causing downregulation of endothelial NO production. Conclusions—Withdrawal of statin therapy in normocholesterolemic mice results in a transient increase of rho activity, causing a suppression of endothelial NO production. The underlying molecular mechanism is a negative feedback regulation of rho gene transcription mediated by the actin cytoskeleton.


Brain Research | 2002

Rosuvastatin, a new HMG-CoA reductase inhibitor, upregulates endothelial nitric oxide synthase and protects from ischemic stroke in mice.

Ulrich Laufs; Karen Gertz; Ulrich Dirnagl; Michael Böhm; Georg Nickenig; Matthias Endres

HMG-CoA reductase inhibitors (statins) are cholesterol-lowering drugs and reduce the risk of myocardial infarction and stroke. In this study we investigated whether rosuvastatin, a new, potent HMG-CoA reductase inhibitor, upregulates endothelial nitric oxide (NO) expression and activity and protects from cerebral ischaemia in mice. Endothelial cells in culture and 129/SV mice were chronically treated with rosuvastatin. The expression and activity of endothelial NO synthase (eNOS) was determined by reverse-transcriptase polymerase chain reaction (RT-PCR), Western blotting and arginine-citrulline assays. Cerebral ischaemia was induced by occlusion of the middle cerebral artery (MCAo) for 2 h and infarct size was determined after 22 h of reperfusion. Treatment of endothelial cells with rosuvastatin concentration- and time-dependently upregulated eNOS mRNA and protein expression. In aortas of 129/SV wild-type mice, treatment with 0.2, 2, and 20 mg kg(-1) rosuvastatin subcutaneously (s.c.) for 10 days significantly upregulated eNOS mRNA by 50, 142, and 205%, respectively. NOS activity was significantly increased by 75, 145, and 320%, respectively. Stroke volume after 2-h MCAo was reduced by 27, 56, and 50% (for 0.2, 2 and 20 mg kg(-1), respectively). Serum cholesterol and triglygeride levels were not significantly lowered by the treatment. The novel HMG-CoA reductase inhibitor rosuvastatin dose-dependently upregulates eNOS expression and activity and protects from cerebral ischaemia in mice. The effects are independent of changes in cholesterol levels and are equivalent or even superior to the protective effects by simvastatin and atorvastatin in this animal model.


Circulation Research | 2006

Physical Activity Improves Long-Term Stroke Outcome via Endothelial Nitric Oxide Synthase–Dependent Augmentation of Neovascularization and Cerebral Blood Flow

Karen Gertz; Josef Priller; Golo Kronenberg; Klaus Fink; Benjamin Winter; Helmut Schröck; Shengbo Ji; Milan Milosevic; Christoph Harms; Michael Böhm; Ulrich Dirnagl; Ulrich Laufs; Matthias Endres

Physical activity upregulates endothelial nitric oxide synthase (eNOS), improves endothelium function, and protects from vascular disease. Here, we tested whether voluntary running would enhance neovascularization and long-term recovery following mild brain ischemia. Wild-type mice were exposed to 30 minutes of middle-cerebral artery occlusion (MCAo) and reperfusion. Continuous voluntary running on wheels conferred long-term upregulation of eNOS in the vasculature and of endothelial progenitor cells (EPCs) in the spleen and bone marrow (BM). This was associated with higher numbers of circulating EPCs in the blood and enhanced neovascularization. Moreover, engraftment of TIE2/LacZ-positive BM-derived cells was increased in the ischemic brain. Four weeks after the insult, trained animals showed higher numbers of newly generated cells in vascular sites, increased density of perfused microvessels and sustained augmentation of cerebral blood flow within the ischemic striatum. Moreover, running conferred tissue sparing and improved functional outcome at 4 weeks. The protective effects of running on angiogenesis and outcome were completely abolished when animals were treated with a NOS inhibitor or the antiangiogenic compound endostatin after brain ischemia, and in animals lacking eNOS expression. Voluntary physical activity improves long-term stroke outcome by eNOS-dependent mechanisms related to improved angiogenesis and cerebral blood flow.


Stroke | 2003

Withdrawal of Statin Treatment Abrogates Stroke Protection in Mice

Karen Gertz; Ulrich Laufs; Ute Lindauer; Georg Nickenig; Michael Böhm; Ulrich Dirnagl; Matthias Endres

Background and Purpose— Statins (3-hydroxy-3-methylglutaryl–coenzyme A [HMG-CoA] reductase inhibitors) reduce stroke damage independent of lipid lowering by upregulation of endothelial nitric oxide synthase (eNOS). Acute withdrawal of statin treatment may suppress endothelial NO production and impair vascular function. Methods— To test this hypothesis, we treated 129/SV mice with atorvastatin (10 mg/kg) for 14 days and then withdrew treatment. Results— Treatment with atorvastatin conferred stroke protection by 40% after filamentous occlusion of the middle cerebral artery followed by reperfusion. Withdrawal of statin treatment, however, resulted in the loss of stroke protection after 2 and 4 days. In mouse aortas and brain vasculature, statins upregulated eNOS message 2.3- and 1.7-fold, respectively, as measured by reverse transcription–polymerase chain reaction. Withdrawal of statins resulted in 5- and 2.7-fold downregulation of eNOS in aorta and brain, respectively, after 2 days. Statin treatment decreased RhoA GTPase membrane expression to 48%, while withdrawal of statins resulted in 4-fold increase of RhoA in the membrane. Moreover, platelet factor 4 and &bgr;-thromboglobulin in plasma were significantly downregulated by statin treatment, but withdrawal of statins resulted in a 2.9- and 3.1-fold upregulation after 2 days, respectively. Thrombus formation induced by ligature of the inferior vena cava was significantly reduced by statin treatment. When statin treatment was withdrawn, however, protection was lost between 2 and 4 days. Conclusions— Acute termination of statin treatment results in a rapid loss of protection in mouse models of cerebral ischemia and thrombus formation independent of lipid lowering. In patients with acute or impending stroke, withdrawal of statins may impair outcome.


Journal of the American College of Cardiology | 2008

Vascular Effects of Diet Supplementation With Plant Sterols

Oliver Weingärtner; Dieter Lütjohann; Shengbo Ji; Nicole Weisshoff; Franka List; Thomas Sudhop; Klaus von Bergmann; Karen Gertz; Jochem König; Hans-Joachim Schäfers; Matthias Endres; Michael Böhm; Ulrich Laufs

OBJECTIVES The purpose of this study was to evaluate vascular effects of diet supplementation with plant sterol esters (PSE). BACKGROUND Plant sterol esters are used as food supplements to reduce cholesterol levels. Their effects on endothelial function, stroke, or atherogenesis are not known. METHODS In mice, plasma sterol concentrations were correlated with endothelial function, cerebral lesion size, and atherosclerosis. Plasma and tissue sterol concentrations were measured by gas-liquid chromatography-mass spectrometry in 82 consecutive patients with aortic stenosis. RESULTS Compared with those fed with normal chow (NC), wild-type mice fed with NC supplemented with 2% PSE showed increased plant sterol but equal cholesterol plasma concentrations. The PSE supplementation impaired endothelium-dependent vasorelaxation and increased cerebral lesion size after middle cerebral artery occlusion. To test the effects of cholesterol-lowering by PSE, apolipoprotein E (ApoE)-/- mice were randomized to Western-type diet (WTD) with the addition of PSE or ezetimibe (EZE). Compared with WTD, both interventions reduced plaque sizes; however, WTD + PSE showed larger plaques compared with WTD + EZE (20.4 +/- 2.1% vs. 10.0 +/- 1.5%). Plant sterol plasma concentration strongly correlated with increased atherosclerotic lesion formation (r = 0.50). Furthermore, we examined plasma and aortic valve concentrations of plant sterol in 82 consecutive patients with aortic stenosis. Patients eating PSE-supplemented margarine (n = 10) showed increased plasma concentrations and 5-fold higher sterol concentrations in aortic valve tissue. CONCLUSIONS Food supplementation with PSE impairs endothelial function, aggravates ischemic brain injury, effects atherogenesis in mice, and leads to increased tissue sterol concentrations in humans. Therefore, prospective studies are warranted that evaluate not only effects on cholesterol reduction, but also on clinical endpoints.


Brain | 2012

Essential role of interleukin-6 in post-stroke angiogenesis

Karen Gertz; Golo Kronenberg; Roland Kälin; Tina Baldinger; Christian Werner; Mustafa Balkaya; Gina Eom; Julian Hellmann-Regen; Jan Kröber; Kelly R. Miller; Ute Lindauer; Ulrich Laufs; Ulrich Dirnagl; Frank L. Heppner; Matthias Endres

Ambivalent effects of interleukin-6 on the pathogenesis of ischaemic stroke have been reported. However, to date, the long-term actions of interleukin-6 after stroke have not been investigated. Here, we subjected interleukin-6 knockout (IL-6(-/-)) and wild-type control mice to mild brain ischaemia by 30-min filamentous middle cerebral artery occlusion/reperfusion. While ischaemic tissue damage was comparable at early time points, IL-6(-/-) mice showed significantly increased chronic lesion volumes as well as worse long-term functional outcome. In particular, IL-6(-/-) mice displayed an impaired angiogenic response to brain ischaemia with reduced numbers of newly generated endothelial cells and decreased density of perfused microvessels along with lower absolute regional cerebral blood flow and reduced vessel responsivity in ischaemic striatum at 4 weeks. Similarly, the early genomic activation of angiogenesis-related gene networks was strongly reduced and the ischaemia-induced signal transducer and activator of transcription 3 activation observed in wild-type mice was almost absent in IL-6(-/-) mice. In addition, systemic neoangiogenesis was impaired in IL-6(-/-) mice. Transplantation of interleukin-6 competent bone marrow into IL-6(-/-) mice (IL-6(chi)) did not rescue interleukin-6 messenger RNA expression or the early transcriptional activation of angiogenesis after stroke. Accordingly, chronic stroke outcome in IL-6(chi) mice recapitulated the major effects of interleukin-6 deficiency on post-stroke regeneration with significantly enhanced lesion volumes and reduced vessel densities. Additional in vitro experiments yielded complementary evidence, which showed that after stroke resident brain cells serve as the major source of interleukin-6 in a self-amplifying network. Treatment of primary cortical neurons, mixed glial cultures or immortalized brain endothelia with interleukin 6-induced robust interleukin-6 messenger RNA transcription in each case, whereas oxygen-glucose deprivation did not. However, oxygen-glucose deprivation of organotypic brain slices resulted in strong upregulation of interleukin-6 messenger RNA along with increased transcription of key angiogenesis-associated genes. In conclusion, interleukin-6 produced locally by resident brain cells promotes post-stroke angiogenesis and thereby affords long-term histological and functional protection.


Brain Research | 2000

Hyperbaric oxygenation induced tolerance against focal cerebral ischemia in mice is strain dependent

Konstantin Prass; Frank Wiegand; Pascale Schumann; Melanie Ahrens; Krisztian Kapinya; Christoph Harms; Weijing Liao; George Trendelenburg; Karen Gertz; Michael A. Moskowitz; Felix Knapp; Ilya V. Victorov; Dirk Megow; Ulrich Dirnagl

SV129 or C57BL/6 mice were exposed to hyperbaric oxygenation (HBO, 5 days, 1 h every day, 100% O(2) at 3 atm absolute). One day after the 5th HBO session focal cerebral ischemia was induced. In SV129 mice, HBO induced tolerance against permanent focal cerebral ischemia (n=42, mean infarct volume reduction 27%, P=0.001), but not against transient (30 or 60 min) focal cerebral ischemia. In the C57BL/6 strain of mice, HBO did not induce tolerance against focal cerebral ischemia, even when the duration of ischemia or the HBO protocol were modified. For the first time we demonstrate that HBO can induce tolerance to focal cerebral ischemia, but this effect is strain dependent.


Experimental Neurology | 2008

Inhibition of histone deacetylation protects wildtype but not gelsolin-deficient mice from ischemic brain injury

Ferah Yildirim; Karen Gertz; Golo Kronenberg; Christoph Harms; Klaus Fink; Andreas Meisel; Matthias Endres

Acetylation/deactylation of histones is an important mechanism to regulate gene expression and chromatin remodeling. We have previously demonstrated that the HDAC inhibitor trichostatin A (TSA) protects cortical neurons from oxygen/glucose deprivation in vitro which is mediated--at least in part--via the up regulation of gelsolin expression. Here, we demonstrate that TSA treatment dose-dependently enhances histone acetylation in brains of wildtype mice as evidenced by immunoblots of total brain lysates and immunocytochemical staining. Along with increased histone acetylation dose-dependent up regulation of gelsolin protein was observed. Levels of filamentous actin were largely decreased by TSA pre-treatment in brain of wildtype but not gelsolin-deficient mice. When exposed to 1 h filamentous occlusion of the middle cerebral artery followed by reperfusion TSA pre-treated wildtype mice developed significantly smaller cerebral lesion volumes and tended to have improved neurological deficit scores compared to vehicle-treated mice. These protective effects could not be explained by apparent changes in physiological parameters. In contrast to wildtype mice, TSA pre-treatment did not protect gelsolin-deficient mice against MCAo/reperfusion suggesting that enhanced gelsolin expression is an important mechanism by which TSA protects against ischemic brain injury. Our results suggest that HDAC inhibitors such as TSA are a promising therapeutic strategy for reducing brain injury following cerebral ischemia.

Collaboration


Dive into the Karen Gertz's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helmut Kettenmann

Max Delbrück Center for Molecular Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge