Lillian M. Daughrity
Mayo Clinic
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Lillian M. Daughrity.
Acta Neuropathologica | 2013
Tania F. Gendron; Kevin F. Bieniek; Yong Jie Zhang; Karen Jansen-West; Peter E.A. Ash; Thomas R. Caulfield; Lillian M. Daughrity; Judith Dunmore; Monica Castanedes-Casey; Jeannie Chew; Danielle M. Cosio; Marka van Blitterswijk; Wing C. Lee; Rosa Rademakers; Kevin B. Boylan; Dennis W. Dickson; Leonard Petrucelli
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are devastating neurodegenerative disorders with clinical, genetic, and neuropathological overlap. A hexanucleotide (GGGGCC) repeat expansion in a non-coding region of C9ORF72 is the major genetic cause of both diseases. The mechanisms by which this repeat expansion causes “c9FTD/ALS” are not definitively known, but RNA-mediated toxicity is a likely culprit. RNA transcripts of the expanded GGGGCC repeat form nuclear foci in c9FTD/ALS, and also undergo repeat-associated non-ATG (RAN) translation resulting in the production of three aggregation-prone proteins. The goal of this study was to examine whether antisense transcripts resulting from bidirectional transcription of the expanded repeat behave in a similar manner. We show that ectopic expression of (CCCCGG)66 in cultured cells results in foci formation. Using novel polyclonal antibodies for the detection of possible (CCCCGG)exp RAN proteins [poly(PR), poly(GP) and poly(PA)], we validated that (CCCCGG)66 is also subject to RAN translation in transfected cells. Of importance, foci composed of antisense transcripts are observed in the frontal cortex, spinal cord and cerebellum of c9FTD/ALS cases, and neuronal inclusions of poly(PR), poly(GP) and poly(PA) are present in various brain tissues in c9FTD/ALS, but not in other neurodegenerative diseases, including CAG repeat disorders. Of note, RNA foci and poly(GP) inclusions infrequently co-occur in the same cell, suggesting these events represent two distinct ways in which the C9ORF72 repeat expansion may evoke neurotoxic effects. These findings provide mechanistic insight into the pathogenesis of c9FTD/ALS, and have significant implications for therapeutic strategies.
Science | 2015
Jeannie Chew; Tania F. Gendron; Mercedes Prudencio; Hiroki Sasaguri; Yong Jie Zhang; Monica Castanedes-Casey; Chris W. Lee; Karen Jansen-West; Aishe Kurti; Melissa E. Murray; Kevin F. Bieniek; Peter O. Bauer; Ena C. Whitelaw; Linda Rousseau; Jeannette N. Stankowski; Caroline Stetler; Lillian M. Daughrity; Emilie A. Perkerson; Pamela Desaro; Amelia Johnston; Karen Overstreet; Dieter Edbauer; Rosa Rademakers; Kevin B. Boylan; Dennis W. Dickson; John D. Fryer; Leonard Petrucelli
A mouse model for ALS A G4C2 repeat expansion in C9ORF72 is known to be the major genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis (c9FTD/ALS). However, a lack of animal models recapitulating key disease features has hindered efforts to understand and prevent c9FTD/ALS-related neurodegeneration. Until now. Chew et al. describe a mouse model that mimics both neuropathological and clinical phenotypes of c9FTD/ALS. Science, this issue p. 1151 A mouse model mimics the pathological and behavioral abnormalities seen in certain amyotrophic lateral sclerosis or frontotemporal dementia patients. The major genetic cause of frontotemporal dementia and amyotrophic lateral sclerosis is a G4C2 repeat expansion in C9ORF72. Efforts to combat neurodegeneration associated with “c9FTD/ALS” are hindered by a lack of animal models recapitulating disease features. We developed a mouse model to mimic both neuropathological and clinical c9FTD/ALS phenotypes. We expressed (G4C2)66 throughout the murine central nervous system by means of somatic brain transgenesis mediated by adeno-associated virus. Brains of 6-month-old mice contained nuclear RNA foci, inclusions of poly(Gly-Pro), poly(Gly-Ala), and poly(Gly-Arg) dipeptide repeat proteins, as well as TDP-43 pathology. These mouse brains also exhibited cortical neuron and cerebellar Purkinje cell loss, astrogliosis, and decreased weight. (G4C2)66 mice also developed behavioral abnormalities similar to clinical symptoms of c9FTD/ALS patients, including hyperactivity, anxiety, antisocial behavior, and motor deficits.
Acta Neuropathologica | 2013
Veronique V. Belzil; Peter O. Bauer; Mercedes Prudencio; Tania F. Gendron; Caroline Stetler; Irene K. Yan; Luc Pregent; Lillian M. Daughrity; Matt Baker; Rosa Rademakers; Kevin B. Boylan; Tushar Patel; Dennis W. Dickson; Leonard Petrucelli
Individuals carrying (GGGGCC) expanded repeats in the C9orf72 gene represent a significant portion of patients suffering from amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Elucidating how these expanded repeats cause “c9FTD/ALS” has since become an important goal of the field. Toward this end, we sought to investigate whether epigenetic changes are responsible for the decrease in C9orf72 expression levels observed in c9FTD/ALS patients. We obtained brain tissue from ten c9FTD/ALS individuals, nine FTD/ALS cases without a C9orf72 repeat expansion, and nine disease control participants, and generated fibroblastoid cell lines from seven C9orf72 expanded repeat carriers and seven participants carrying normal alleles. Chromatin immunoprecipitation using antibodies for histone H3 and H4 trimethylated at lysines 9 (H3K9), 27 (H3K27), 79 (H3K79), and 20 (H4K20) revealed that these trimethylated residues bind strongly to C9orf72 expanded repeats in brain tissue, but not to non-pathogenic repeats. Our finding that C9orf72 mRNA levels are reduced in the frontal cortices and cerebella of c9FTD/ALS patients is consistent with trimethylation of these histone residues, an event known to repress gene expression. Moreover, treating repeat carrier-derived fibroblasts with 5-aza-2-deoxycytidine, a DNA and histone demethylating agent, not only decreased C9orf72 binding to trimethylated histone residues, but also increased C9orf72 mRNA expression. Our results provide compelling evidence that trimethylation of lysine residues within histones H3 and H4 is a novel mechanism involved in reducing C9orf72 mRNA expression in expanded repeat carriers. Of importance, we show that mutant C9orf72 binding to trimethylated H3K9 and H3K27 is detectable in blood of c9FTD/ALS patients. Confirming these exciting results using blood from a larger cohort of patients may establish this novel epigenetic event as a biomarker for c9FTD/ALS.
Acta Neuropathologica | 2014
Yong Jie Zhang; Karen Jansen-West; Ya Fei Xu; Tania F. Gendron; Kevin F. Bieniek; Wen Lang Lin; Hiroki Sasaguri; Thomas R. Caulfield; Jaime Hubbard; Lillian M. Daughrity; Jeannie Chew; Veronique V. Belzil; Mercedes Prudencio; Jeannette N. Stankowski; Monica Castanedes-Casey; Ena C. Whitelaw; Peter E.A. Ash; Michael DeTure; Rosa Rademakers; Kevin B. Boylan; Dennis W. Dickson; Leonard Petrucelli
The occurrence of repeat-associated non-ATG (RAN) translation, an atypical form of translation of expanded repeats that results in the synthesis of homopolymeric expansion proteins, is becoming more widely appreciated among microsatellite expansion disorders. Such disorders include amyotrophic lateral sclerosis and frontotemporal dementia caused by a hexanucleotide repeat expansion in the C9ORF72 gene (c9FTD/ALS). We and others have recently shown that this bidirectionally transcribed repeat is RAN translated, and the “c9RAN proteins” thusly produced form neuronal inclusions throughout the central nervous system of c9FTD/ALS patients. Nonetheless, the potential contribution of c9RAN proteins to disease pathogenesis remains poorly understood. In the present study, we demonstrate that poly(GA) c9RAN proteins are neurotoxic and may be implicated in the neurodegenerative processes of c9FTD/ALS. Specifically, we show that expression of poly(GA) proteins in cultured cells and primary neurons leads to the formation of soluble and insoluble high molecular weight species, as well as inclusions composed of filaments similar to those observed in c9FTD/ALS brain tissues. The expression of poly(GA) proteins is accompanied by caspase-3 activation, impaired neurite outgrowth, inhibition of proteasome activity, and evidence of endoplasmic reticulum (ER) stress. Of importance, ER stress inhibitors, salubrinal and TUDCA, provide protection against poly(GA)-induced toxicity. Taken together, our data provide compelling evidence towards establishing RAN translation as a pathogenic mechanism of c9FTD/ALS, and suggest that targeting the ER using small molecules may be a promising therapeutic approach for these devastating diseases.
Neuron | 2015
Jacqueline G O'Rourke; Laurent Bogdanik; A. K. M. G. Muhammad; Tania F. Gendron; Kevin Kim; Andrew Austin; Janet Cady; Elaine Y. Liu; Jonah Zarrow; Sharday Grant; Ritchie Ho; Shaughn Bell; Sharon Carmona; Megan Simpkinson; Deepti Lall; Kathryn Wu; Lillian M. Daughrity; Dennis W. Dickson; Matthew B. Harms; Leonard Petrucelli; Edward B. Lee; Cathleen Lutz; Robert H. Baloh
Noncoding expansions of a hexanucleotide repeat (GGGGCC) in the C9orf72 gene are the most common cause of familial amyotrophic lateral sclerosis and frontotemporal dementia. Here we report transgenic mice carrying a bacterial artificial chromosome (BAC) containing the full human C9orf72 gene with either a normal allele (15 repeats) or disease-associated expansion (∼100-1,000 repeats; C9-BACexp). C9-BACexp mice displayed pathologic features seen in C9orf72 expansion patients, including widespread RNA foci and repeat-associated non-ATG (RAN) translated dipeptides, which were suppressed by antisense oligonucleotides targeting human C9orf72. Nucleolin distribution was altered, supporting that either C9orf72 transcripts or RAN dipeptides promote nucleolar dysfunction. Despite early and widespread production of RNA foci and RAN dipeptides in C9-BACexp mice, behavioral abnormalities and neurodegeneration were not observed even at advanced ages, supporting the hypothesis that RNA foci and RAN dipeptides occur presymptomatically and are not sufficient to drive neurodegeneration in mice at levels seen in patients.
Neuron | 2015
Owen M. Peters; Gabriela Toro Cabrera; Helene Tran; Tania F. Gendron; Jeanne E. McKeon; Jake Metterville; Alexandra Weiss; Nicholas Wightman; Johnny Salameh; Juhyun Kim; Huaming Sun; Kevin B. Boylan; Dennis W. Dickson; Zachary Kennedy; Ziqiang Lin; Yong Jie Zhang; Lillian M. Daughrity; Chris J. Jung; Fen-Biao Gao; Peter C. Sapp; H. Robert Horvitz; Daryl A. Bosco; Solange P. Brown; Pieter J. de Jong; Leonard Petrucelli; Christian Mueller; Robert H. Brown
A non-coding hexanucleotide repeat expansion in the C9ORF72 gene is the most common mutation associated with familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). To investigate the pathological role of C9ORF72 in these diseases, we generated a line of mice carrying a bacterial artificial chromosome containing exons 1 to 6 of the human C9ORF72 gene with approximately 500 repeats of the GGGGCC motif. The mice showed no overt behavioral phenotype but recapitulated distinctive histopathological features of C9ORF72 ALS/FTD, including sense and antisense intranuclear RNA foci and poly(glycine-proline) dipeptide repeat proteins. Finally, using an artificial microRNA that targets human C9ORF72 in cultures of primary cortical neurons from the C9BAC mice, we have attenuated expression of the C9BAC transgene and the poly(GP) dipeptides. The C9ORF72 BAC transgenic mice will be a valuable tool in the study of ALS/FTD pathobiology and therapy.
Nature Neuroscience | 2016
Yong Jie Zhang; Tania F. Gendron; Jonathan C. Grima; Hiroki Sasaguri; Karen Jansen-West; Ya Fei Xu; Rebecca B. Katzman; Jennifer Gass; Melissa E. Murray; Mitsuru Shinohara; Wen Lang Lin; Aliesha Garrett; Jeannette N. Stankowski; Lillian M. Daughrity; Jimei Tong; Emilie A. Perkerson; Mei Yue; Jeannie Chew; Monica Castanedes-Casey; Aishe Kurti; Zizhao S. Wang; Amanda M. Liesinger; Jeremy D. Baker; Jie Jiang; Clotilde Lagier-Tourenne; Dieter Edbauer; Don W. Cleveland; Rosa Rademakers; Kevin B. Boylan; Guojun Bu
Neuronal inclusions of poly(GA), a protein unconventionally translated from G4C2 repeat expansions in C9ORF72, are abundant in patients with frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) caused by this mutation. To investigate poly(GA) toxicity, we generated mice that exhibit poly(GA) pathology, neurodegeneration and behavioral abnormalities reminiscent of FTD and ALS. These phenotypes occurred in the absence of TDP-43 pathology and required poly(GA) aggregation. HR23 proteins involved in proteasomal degradation and proteins involved in nucleocytoplasmic transport were sequestered by poly(GA) in these mice. HR23A and HR23B similarly colocalized to poly(GA) inclusions in C9ORF72 expansion carriers. Sequestration was accompanied by an accumulation of ubiquitinated proteins and decreased xeroderma pigmentosum C (XPC) levels in mice, indicative of HR23A and HR23B dysfunction. Restoring HR23B levels attenuated poly(GA) aggregation and rescued poly(GA)-induced toxicity in neuronal cultures. These data demonstrate that sequestration and impairment of nuclear HR23 and nucleocytoplasmic transport proteins is an outcome of, and a contributor to, poly(GA) pathology.
Acta Neuropathologica | 2015
Tania F. Gendron; Marka van Blitterswijk; Kevin F. Bieniek; Lillian M. Daughrity; Jie Jiang; Beth K. Rush; Otto Pedraza; John A. Lucas; Melissa E. Murray; Pamela Desaro; Amelia Robertson; Karen Overstreet; Colleen S. Thomas; Julia E. Crook; Monica Castanedes-Casey; Linda Rousseau; Keith A. Josephs; Joseph E. Parisi; David S. Knopman; Ronald C. Petersen; Bradley F. Boeve; Neill R. Graff-Radford; Rosa Rademakers; Clotilde Lagier-Tourenne; Dieter Edbauer; Don W. Cleveland; Dennis W. Dickson; Leonard Petrucelli; Kevin B. Boylan
Clinical and neuropathological characteristics associated with G4C2 repeat expansions in chromosome 9 open reading frame 72 (C9ORF72), the most common genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia, are highly variable. To gain insight on the molecular basis for the heterogeneity among C9ORF72 mutation carriers, we evaluated associations between features of disease and levels of two abundantly expressed “c9RAN proteins” produced by repeat-associated non-ATG (RAN) translation of the expanded repeat. For these studies, we took a departure from traditional immunohistochemical approaches and instead employed immunoassays to quantitatively measure poly(GP) and poly(GA) levels in cerebellum, frontal cortex, motor cortex, and/or hippocampus from 55 C9ORF72 mutation carriers [12 patients with ALS, 24 with frontotemporal lobar degeneration (FTLD) and 19 with FTLD with motor neuron disease (FTLD-MND)]. We additionally investigated associations between levels of poly(GP) or poly(GA) and cognitive impairment in 15 C9ORF72 ALS patients for whom neuropsychological data were available. Among the neuroanatomical regions investigated, poly(GP) levels were highest in the cerebellum. In this same region, associations between poly(GP) and both neuropathological and clinical features were detected. Specifically, cerebellar poly(GP) levels were significantly lower in patients with ALS compared to patients with FTLD or FTLD-MND. Furthermore, cerebellar poly(GP) associated with cognitive score in our cohort of 15 patients. In the cerebellum, poly(GA) levels similarly trended lower in the ALS subgroup compared to FTLD or FTLD-MND subgroups, but no association between cerebellar poly(GA) and cognitive score was detected. Both cerebellar poly(GP) and poly(GA) associated with C9ORF72 variant 3 mRNA expression, but not variant 1 expression, repeat size, disease onset, or survival after onset. Overall, these data indicate that cerebellar abnormalities, as evidenced by poly(GP) accumulation, associate with neuropathological and clinical phenotypes, in particular cognitive impairment, of C9ORF72 mutation carriers.
Science Translational Medicine | 2017
Tania F. Gendron; Jeannie Chew; Jeannette N. Stankowski; Lindsey R. Hayes; Yong Jie Zhang; Mercedes Prudencio; Yari Carlomagno; Lillian M. Daughrity; Karen Jansen-West; Emilie A. Perkerson; Aliesha O'Raw; Casey Cook; Luc Pregent; Veronique V. Belzil; Marka van Blitterswijk; Lilia J. Tabassian; Chris W. Lee; Mei Yue; Jimei Tong; Yuping Song; Monica Castanedes-Casey; Linda Rousseau; Virginia Phillips; Dennis W. Dickson; Rosa Rademakers; John D. Fryer; Beth K. Rush; Otto Pedraza; Ana M. Caputo; Pamela Desaro
Poly(GP) proteins are a promising pharmacodynamic marker for developing and testing therapeutics for treating C9ORF72-associated amyotrophic lateral sclerosis. Homing in on poly(GP) proteins A mutation in the C9ORF72 gene causes amyotrophic lateral sclerosis (ALS) through the accumulation of G4C2 RNA. Therapeutics that target G4C2 RNA are thus being developed. Testing these therapeutics in patients with “c9ALS” will depend on finding a marker to monitor the effect of treatments on G4C2 RNA. Gendron et al. demonstrate that poly(GP) proteins produced from G4C2 RNA are present in cerebrospinal fluid from c9ALS patients. Furthermore, using patient cell models and a mouse model of c9ALS, they report that poly(GP) proteins correlate with G4C2 RNA, suggesting that poly(GP) could be used to test potential treatments for c9ALS in upcoming clinical trials. There is no effective treatment for amyotrophic lateral sclerosis (ALS), a devastating motor neuron disease. However, discovery of a G4C2 repeat expansion in the C9ORF72 gene as the most common genetic cause of ALS has opened up new avenues for therapeutic intervention for this form of ALS. G4C2 repeat expansion RNAs and proteins of repeating dipeptides synthesized from these transcripts are believed to play a key role in C9ORF72-associated ALS (c9ALS). Therapeutics that target G4C2 RNA, such as antisense oligonucleotides (ASOs) and small molecules, are thus being actively investigated. A limitation in moving such treatments from bench to bedside is a lack of pharmacodynamic markers for use in clinical trials. We explored whether poly(GP) proteins translated from G4C2 RNA could serve such a purpose. Poly(GP) proteins were detected in cerebrospinal fluid (CSF) and in peripheral blood mononuclear cells from c9ALS patients and, notably, from asymptomatic C9ORF72 mutation carriers. Moreover, CSF poly(GP) proteins remained relatively constant over time, boding well for their use in gauging biochemical responses to potential treatments. Treating c9ALS patient cells or a mouse model of c9ALS with ASOs that target G4C2 RNA resulted in decreased intracellular and extracellular poly(GP) proteins. This decrease paralleled reductions in G4C2 RNA and downstream G4C2 RNA–mediated events. These findings indicate that tracking poly(GP) proteins in CSF could provide a means to assess target engagement of G4C2 RNA–based therapies in symptomatic C9ORF72 repeat expansion carriers and presymptomatic individuals who are expected to benefit from early therapeutic intervention.
Human Molecular Genetics | 2017
Mercedes Prudencio; Patrick Gonzales; Casey Cook; Tania F. Gendron; Lillian M. Daughrity; Yuping Song; Mark T. W. Ebbert; Marka van Blitterswijk; Yong Jie Zhang; Karen Jansen-West; Matt Baker; Michael DeTure; Rosa Rademakers; Kevin B. Boylan; Dennis W. Dickson; Leonard Petrucelli; Christopher D. Link
Abstract Significant transcriptome alterations are detected in the brain of patients with amyotrophic lateral sclerosis (ALS), including carriers of the C9orf72 repeat expansion and C9orf72-negative sporadic cases. Recently, the expression of repetitive element transcripts has been associated with toxicity and, while increased repetitive element expression has been observed in several neurodegenerative diseases, little is known about their contribution to ALS. To assess whether aberrant expression of repetitive element sequences are observed in ALS, we analysed RNA sequencing data from C9orf72-positive and sporadic ALS cases, as well as healthy controls. Transcripts from multiple classes and subclasses of repetitive elements (LINEs, endogenous retroviruses, DNA transposons, simple repeats, etc.) were significantly increased in the frontal cortex of C9orf72 ALS patients. A large collection of patient samples, representing both C9orf72 positive and negative ALS, ALS/FTLD, and FTLD cases, was used to validate the levels of several repetitive element transcripts. These analyses confirmed that repetitive element expression was significantly increased in C9orf72-positive compared to C9orf72-negative or control cases. While previous studies suggest an important link between TDP-43 and repetitive element biology, our data indicate that TDP-43 pathology alone is insufficient to account for the observed changes in repetitive elements in ALS/FTLD. Instead, we found that repetitive element expression positively correlated with RNA polymerase II activity in postmortem brain, and pharmacologic modulation of RNA polymerase II activity altered repetitive element expression in vitro. We conclude that increased RNA polymerase II activity in ALS/FTLD may lead to increased repetitive element transcript expression, a novel pathological feature of ALS/FTLD.