Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen Krzywkowski is active.

Publication


Featured researches published by Karen Krzywkowski.


Trends in Pharmacological Sciences | 2008

3B but which 3B? And that's just one of the questions : the heterogeneity of human 5-HT3 receptors

Anders A. Jensen; Paul Davies; Hans Bräuner-Osborne; Karen Krzywkowski

The 5-hydroxytryptamine 3 (5-HT3) receptor is expressed widely in the central and peripheral nervous systems, where it mediates or modulates a wide range of physiological processes. The receptor is targeted by drugs administered for nausea and/or emesis and irritable bowel syndrome and has been proposed as a potential drug target in various psychiatric disorders. The 5-HT3 receptor is a pentameric ligand-gated ion channel and belongs to the Cys-loop receptor family. In contrast to the immense heterogeneity characterizing other Cysloop receptors, native 5-HT3 receptors historically have been considered a much more homogenous receptor population. However, the recent discovery of additional 5-HT3 subunits and the dawning realization that central and peripheral 5-HT3 receptor populations might comprise several subtypes characterized by distinct functional properties has emphasized the complexity of human 5-HT3 receptor signaling. In this review potential implications of these findings and of the entirely new layer of interindividual diversity introduced to the 5-HT3 receptor system by genetic variations will be outlined.


Proceedings of the National Academy of Sciences of the United States of America | 2008

High-frequency HTR3B variant associated with major depression dramatically augments the signaling of the human 5-HT3AB receptor

Karen Krzywkowski; Paul Davies; Paula L. Feinberg-Zadek; Hans Bräuner-Osborne; Anders A. Jensen

The 5-hydroxytryptamine-3 (5-HT3) receptor mediates the fast excitatory neurotransmission of serotonin and is known to mediate the nausea/emesis induced by radio/chemotherapy and anesthetics. A polymorphism encoding the variation Y129S in the 5-HT3B subunit exists in high frequency in the general population and has been shown to be inversely correlated to the incidence of major depression in women. We show that 5-HT3AB(Y129S) receptors exhibit a substantially increased maximal response to serotonin compared with WT receptors in two fluorescence-based cellular assays. In electrophysiological recordings, the deactivation and desensitization kinetics of the 5-HT3AB(Y129S) receptor are 20- and 10-fold slower, respectively, than those of the WT receptor. Single-channel measurements reveal a 7-fold-increased mean open time of 5-HT3AB(Y129S) receptors compared with WT receptors. The augmented signaling displayed by 5-HT3AB(Y129S) receptors may confer protection against the development of depression. The variant also may influence the development and/or treatment of nausea and other disorders involving 5-HT3 receptors. Thus, the impact of the high-frequency variant 5-HT3B(Y129S) on 5-HT3AB receptor signaling calls for a search for additional phenotypes, and the variant may thus aid in establishing the role of the 5-HT3AB receptor in pathophysiology.


Symposium on Functionality of nutrients and behaviour | 1999

Exercise and immune function: effect of ageing and nutrition

Bente Klarlund Pedersen; Helle Bruunsgaard; Marianne Jensen; Karen Krzywkowski; Kenneth Ostrowski

Strenuous exercise is followed by lymphopenia, neutrophilia, impaired natural immunity, decreased lymphocyte proliferative responses to mitogens, a low level of secretory immunoglobulin A in saliva, but high circulating levels of pro- and anti-inflammatory cytokines. These exercise-induced immune changes may provide the physiological basis of altered resistance to infections. The mechanisms underlying exercise-induced immune changes are multifactorial and include neuroendocrinological and metabolic mechanisms. Nutritional supplementation with glutamine abolishes the exercise-induced decline in plasma glutamine, but does not influence post-exercise immune impairment. However, carbohydrate loading diminishes most exercise effects of cytokines, lymphocyte and neutrophils. The diminished neutrophilia and elastase (EC 3.4.21.37) responses to eccentric exercise in elderly subjects were enhanced to levels comparable with those of young subjects by fish oil or vitamin E supplements. However, although vitamin C supplementation may diminish the risk of contracting an infection after strenuous exercise, it is not obvious that this effect is linked to an effect of vitamin C on exercise-induced immune changes. In conclusion, it is premature to make recommendations regarding nutritional supplementation to avoid post-exercise impairment of the immune system.


Pharmacogenetics and Genomics | 2007

Naturally occurring variations in the human 5-HT3A gene profoundly impact 5-HT3 receptor function and expression.

Karen Krzywkowski; Anders A. Jensen; Christopher N. Connolly; Hans Bräuner-Osborne

Background The serotonin [5-hydroxytryptamine (5-HT)]-gated ion channel 5-HT3 is involved in the mediation of postoperative and radiotherapy/chemotherapy-induced nausea/emesis and in irritable bowel syndrome. It has also been suggested to play a role in various psychiatric diseases. Five naturally occurring single nucleotide polymorphisms leading to amino acid changes have been identified in the human 5-HT3A gene. Methods and results We investigated the functional effects of these polymorphisms on the 5-HT3A receptor using fluorescence-based cellular assays. Notably, variants A33T, S253N, and M257I displayed 5-HT-induced maximal responses of 3–64% of the wild-type response, whereas R344H and P391R exhibited wild-type-like function. All variants displayed wild-type-like potencies of 5-HT and three 5-HT3 antagonists. Furthermore, all variants displayed Kd values similar to that of the wild-type receptor in a [3H]GR65630-binding assay. The surface expression of A33T, M257I, and R344H was reduced 2–4-fold compared with the wild-type, despite similar total expression levels. Finally, coexpression of wild-type 5-HT3A or 5-HT3B subunits with 5-HT3A variants A33T, S253N, or M257I resulted in mixed or heteromeric receptors, characterized by significantly reduced maximal responses to 5-HT compared with the wild-type receptors. Conclusions Three polymorphisms of the 5-HT3A gene gave rise to functionally impaired receptors whose function could not be rescued by either wild-type 5-HT3A or 5-HT3B. Three of the variant receptors were surface-expressed at reduced levels in spite of total expression levels similar to wild-type, indicating that these variants affect receptor biogenesis and/or trafficking. These severe single nucleotide polymorphism effects hold promise for identification of new 5-HT3A gene-disease causalities.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Rationally designed chemokine-based toxin targeting the viral G protein-coupled receptor US28 potently inhibits cytomegalovirus infection in vivo

Katja Spiess; Mads G. Jeppesen; Mikkel Malmgaard-Clausen; Karen Krzywkowski; Kalpana Dulal; Tong Cheng; Gertrud Malene Hjortø; Olav Larsen; John S. Burg; Michael A. Jarvis; K. Christopher Garcia; Hua Zhu; Thomas N. Kledal; Mette M. Rosenkilde

Significance All drugs currently used for the clinical treatment of human cytomegalovirus (HCMV) infection are associated with considerable adverse side effects and with the development of drug resistance that results in therapy failure. Here we describe a novel, rationally designed fusion toxin protein (FTP)-based strategy to target HCMV on the basis of its virally expressed G protein-coupled receptor (US28) and cognate chemokine ligand. Viral G protein-coupled receptors are expressed by a number of other clinically important viruses. We suggest that FTP-based molecules targeting virally expressed 7TM receptors may represent a new class of drugs amenable for development against complex viral pathogens. The use of receptor–ligand interactions to direct toxins to kill diseased cells selectively has shown considerable promise for treatment of a number of cancers and, more recently, autoimmune disease. Here we move the fusion toxin protein (FTP) technology beyond cancer/autoimmune therapeutics to target the human viral pathogen, human cytomegalovirus (HCMV), on the basis of its expression of the 7TM G protein-coupled chemokine receptor US28. The virus origin of US28 provides an exceptional chemokine-binding profile with high selectivity and improved binding for the CX3C chemokine, CX3CL1. Moreover, US28 is constitutively internalizing by nature, providing highly effective FTP delivery. We designed a synthetic CX3CL1 variant engineered to have ultra-high affinity for US28 and greater specificity for US28 than the natural sole receptor for CX3CL1, CX3CR1, and we fused the synthetic variant with the cytotoxic domain of Pseudomonas Exotoxin A. This novel strategy of a rationally designed FTP provided unparalleled anti-HCMV efficacy and potency in vitro and in vivo.


Pharmacogenetics and Genomics | 2008

Characterization of the effects of four HTR3B polymorphisms on human 5-HT3AB receptor expression and signalling.

Karen Krzywkowski; Paul Davies; Andrew J. Irving; Hans Bräuner-Osborne; Anders A. Jensen

Background 5-Hydroxytryptamine 3 (5-HT3) receptors mediate the fast excitatory neurotransmission of serotonin. In this study, we have characterized the effects of four naturally occurring, nonsynonymous variants of the human 5-HT3B subunit on expression and signalling properties of heteromeric 5-HT3AB receptors. Methods and results 5-HT3AB receptor signalling was studied in a fluorescence-based cell membrane potential assay and by electrophysiology. Expression levels of cotransfected epitope-tagged 5-HT3A and 5-HT3B subunits were determined using enzyme-linked immunosorbent assay and immunocytochemistry. In cells coexpressing 5-HT3A and 5-HT3B(I143T) subunits, cell surface expression levels of 5-HT3B in particular, and also 5-HT3A were markedly reduced compared with those of wild-type (WT) 5-HT3AB receptor-expressing cells. Electrophysiological recordings on cells coexpressing 5-HT3A and 5-HT3B(I143T) indicated cell surface expression of 5-HT3AB(I143T) receptors with macroscopic current kinetics similar to those of WT 5-HT3AB receptors but with 3-fold lower current densities. In the membrane potential assay, 5-HT3AB(I143T)-transfected cells exhibited signalling properties intermediate to those of WT 5-HT3AB and 5-HT3A receptors. Cotransfection of 5-HT3A, 5-HT3AB(I143T) and WT 5-HT3AB subunit cDNAs did not increase cell surface expression of the variant subunit nor did it restore WT 5-HT3AB receptor signalling completely in the membrane potential assay. In contrast to 5-HT3B(I143T), the 5-HT3B variants S156R, V183I and A223T did not give rise to significant changes in 5-HT3AB receptor expression or signalling properties. Conclusion 5-HT3B(I143T)-containing 5-HT3AB receptors display significantly reduced cell surface expression and different signalling properties compared with WT 5-HT3AB receptors. In contrast, three other 5-HT3B variants, S156R, V183I and A223T, do not appear to alter 5-HT3AB receptor expression or signalling.


Clinical & Developmental Immunology | 2017

Novel Chemokine-Based Immunotoxins for Potent and Selective Targeting of Cytomegalovirus Infected Cells

Katja Spiess; Mads G. Jeppesen; Mikkel Malmgaard-Clausen; Karen Krzywkowski; Thomas N. Kledal; Mette M. Rosenkilde

Immunotoxins as antiviral therapeutics are largely unexplored but have promising prospective due to their high selectivity potential and their unparalleled efficiency. One recent example targeted the virus-encoded G protein-coupled receptor US28 as a strategy for specific and efficient treatment of human cytomegalovirus (HCMV) infections. US28 is expressed on virus-infected cells and scavenge chemokines by rapid internalization. The chemokine-based fusion-toxin protein (FTP) consisted of a variant (F49A) of CX3CL1 specifically targeting US28 linked to the catalytic domain of Pseudomonas exotoxin A (PE). Here, we systematically seek to improve F49A-FTP by modifications in its three structural domains; we generated variants with (1) altered chemokine sequence (K14A, F49L, and F49E), (2) shortened and elongated linker region, and (3) modified toxin domain. Only F49L-FTP displayed higher selectivity in its binding to US28 versus CX3CR1, the endogenous receptor for CX3CL1, but this was not matched by a more selective killing of US28-expressing cells. A longer linker and different toxin variants decreased US28 affinity and selective killing. Thereby, F49A-FTP represents the best candidate for HCMV treatment. Many viruses encode internalizing receptors suggesting that not only HCMV but also, for instance, Epstein-Barr virus and Kaposis sarcoma-associated herpesvirus may be targeted by FTPs.


International Journal of Sports Medicine | 2000

Cytokines in aging and exercise.

Bente Klarlund Pedersen; Helle Bruunsgaard; Kenneth Ostrowski; K. S. Krabbe; Henriette S. Hansen; Karen Krzywkowski; Anders Dyhr Toft; Sisse Rye Søndergaard; Emil Wolsk Petersen; Tobias Ibfelt; Peter Schjerling


Journal of Applied Physiology | 2001

Effect of glutamine and protein supplementation on exercise-induced decreases in salivary IgA.

Karen Krzywkowski; Emil Wolsk Petersen; Kenneth Ostrowski; Harriet Link-Amster; Julio Boza; Jens Halkjær-Kristensen; Bente Klarlund Pedersen


American Journal of Physiology-cell Physiology | 2001

Effect of glutamine supplementation on exercise-induced changes in lymphocyte function

Karen Krzywkowski; Emil Wolsk Petersen; Kenneth Ostrowski; Jens Halkjær Kristensen; Julio Boza; Bente Klarlund Pedersen

Collaboration


Dive into the Karen Krzywkowski's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Katja Spiess

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge