Katja Spiess
University of Copenhagen
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Katja Spiess.
Journal of Virology | 2011
Helen E. Farrell; Alexander M. Abraham; Rhonda D. Cardin; Alexander Hovard Sparre-Ulrich; Mette M. Rosenkilde; Katja Spiess; Tine H. Jensen; Thomas N. Kledal; Nicholas Davis-Poynter
ABSTRACT The human cytomegalovirus (CMV) proteins US28 and UL33 are homologous to chemokine receptors (CKRs). Knockout of the mouse CMV M33 protein (UL33 homologue) results in substantial attenuation of salivary gland infection/replication and reduced efficiency of reactivation from tissue explants. M33-mediated G protein-coupled signaling is critical for the salivary gland phenotype. In this report, we demonstrate that US28 and (to a lesser degree) UL33 restore reactivation from tissue explants and partially restore replication in salivary glands (compared to a signaling-deficient M33 mutant). These studies provide a novel small animal model for evaluation of therapies targeting the human CMV CKRs.
Proceedings of the National Academy of Sciences of the United States of America | 2015
Katja Spiess; Mads G. Jeppesen; Mikkel Malmgaard-Clausen; Karen Krzywkowski; Kalpana Dulal; Tong Cheng; Gertrud Malene Hjortø; Olav Larsen; John S. Burg; Michael A. Jarvis; K. Christopher Garcia; Hua Zhu; Thomas N. Kledal; Mette M. Rosenkilde
Significance All drugs currently used for the clinical treatment of human cytomegalovirus (HCMV) infection are associated with considerable adverse side effects and with the development of drug resistance that results in therapy failure. Here we describe a novel, rationally designed fusion toxin protein (FTP)-based strategy to target HCMV on the basis of its virally expressed G protein-coupled receptor (US28) and cognate chemokine ligand. Viral G protein-coupled receptors are expressed by a number of other clinically important viruses. We suggest that FTP-based molecules targeting virally expressed 7TM receptors may represent a new class of drugs amenable for development against complex viral pathogens. The use of receptor–ligand interactions to direct toxins to kill diseased cells selectively has shown considerable promise for treatment of a number of cancers and, more recently, autoimmune disease. Here we move the fusion toxin protein (FTP) technology beyond cancer/autoimmune therapeutics to target the human viral pathogen, human cytomegalovirus (HCMV), on the basis of its expression of the 7TM G protein-coupled chemokine receptor US28. The virus origin of US28 provides an exceptional chemokine-binding profile with high selectivity and improved binding for the CX3C chemokine, CX3CL1. Moreover, US28 is constitutively internalizing by nature, providing highly effective FTP delivery. We designed a synthetic CX3CL1 variant engineered to have ultra-high affinity for US28 and greater specificity for US28 than the natural sole receptor for CX3CL1, CX3CR1, and we fused the synthetic variant with the cytotoxic domain of Pseudomonas Exotoxin A. This novel strategy of a rationally designed FTP provided unparalleled anti-HCMV efficacy and potency in vitro and in vivo.
Nature Communications | 2017
B. A. Krishna; Katja Spiess; Emma Poole; Betty Lau; Sebastian Voigt; Thomas N. Kledal; Mette M. Rosenkilde; John Sinclair
Reactivation of human cytomegalovirus (HCMV) in transplant recipients can cause life-threatening disease. Consequently, for transplant recipients, killing latently infected cells could have far-reaching clinical benefits. In vivo, myeloid cells and their progenitors are an important site of HCMV latency, and one viral gene expressed by latently infected myeloid cells is US28. This viral gene encodes a cell surface G protein-coupled receptor (GPCR) that binds chemokines, triggering its endocytosis. We show that the expression of US28 on the surface of latently infected cells allows monocytes and their progenitor CD34+ cells to be targeted and killed by F49A-FTP, a highly specific fusion toxin protein that binds this viral GPCR. As expected, this specific targeting of latently infected cells by F49A-FTP also robustly reduces virus reactivation in vitro. Consequently, such specific fusion toxin proteins could form the basis of a therapeutic strategy for eliminating latently infected cells before haematopoietic stem cell transplantation.
Journal of Leukocyte Biology | 2016
Katja Spiess; Mette Høy Jakobsen; Thomas N. Kledal; Mette M. Rosenkilde
There is a constant need for new therapeutic interventions in a wide range of infectious diseases. Over the past few years, the immunotoxins have entered the stage as promising antiviral treatments. Immunotoxins have been extensively explored in cancer treatment and have achieved FDA approval in several cases. Indeed, the design of new anticancer immunotoxins is a rapidly developing field. However, at present, several immunotoxins have been developed targeting a variety of different viruses with high specificity and efficacy. Rather than blocking a viral or cellular pathway needed for virus replication and dissemination, immunotoxins exert their effect by killing and eradicating the pool of infected cells. By targeting a virus‐encoded target molecule, it is possible to obtain superior selectivity and drastically limit the side effects, which is an immunotoxin‐related challenge that has hindered the success of immunotoxins in cancer treatment. Therefore, it seems beneficial to use immunotoxins for the treatment of virus infections. One recent example showed that targeting of virus‐encoded 7 transmembrane (7TM) receptors by immunotoxins could be a future strategy for designing ultraspecific antiviral treatment, ensuring efficient internalization and hence efficient eradication of the pool of infected cells, both in vitro and in vivo. In this review, we provide an overview of the mechanisms of action of immunotoxins and highlight the advantages of immunotoxins as future anti‐viral therapies.
Journal of Virology | 2015
Katja Spiess; Suzan Fares; Alexander Hovard Sparre-Ulrich; Ellen Hilgenberg; Michael A. Jarvis; Bernhard Ehlers; Mette M. Rosenkilde
ABSTRACT Coevolution of herpesviruses with their respective host has resulted in a delicate balance between virus-encoded immune evasion mechanisms and host antiviral immunity. BILF1 encoded by human Epstein-Barr virus (EBV) is a 7-transmembrane (7TM) G-protein-coupled receptor (GPCR) with multiple immunomodulatory functions, including attenuation of PKR phosphorylation, activation of G-protein signaling, and downregulation of major histocompatibility complex (MHC) class I surface expression. In this study, we explored the evolutionary and functional relationships between BILF1 receptor family members from EBV and 12 previously uncharacterized nonhuman primate (NHP) lymphocryptoviruses (LCVs). Phylogenetic analysis defined 3 BILF1 clades, corresponding to LCVs of New World monkeys (clade A) or Old World monkeys and great apes (clades B and C). Common functional properties were suggested by a high degree of sequence conservation in functionally important regions of the BILF1 molecules. A subset of BILF1 receptors from EBV and LCVs from NHPs (chimpanzee, orangutan, marmoset, and siamang) were selected for multifunctional analysis. All receptors exhibited constitutive signaling activity via G protein Gαi and induced activation of the NF-κB transcription factor. In contrast, only 3 of 5 were able to activate NFAT (nuclear factor of activated T cells); chimpanzee and orangutan BILF1 molecules were unable to activate NFAT. Similarly, although all receptors were internalized, BILF1 from the chimpanzee and orangutan displayed an altered cellular localization pattern with predominant cell surface expression. This study shows how biochemical characterization of functionally important orthologous viral proteins can be used to complement phylogenetic analysis to provide further insight into diverse microbial evolutionary relationships and immune evasion function. IMPORTANCE Epstein-Barr virus (EBV), known as an oncovirus, is the only human herpesvirus in the genus Lymphocryptovirus (LCV). EBV uses multiple strategies to hijack infected host cells, establish persistent infection in B cells, and evade antiviral immune responses. As part of EBVs immune evasion strategy, the virus encodes a multifunctional 7-transmembrane (7TM) G-protein-coupled receptor (GPCR), EBV BILF1. In addition to multiple immune evasion-associated functions, EBV BILF1 has transforming properties, which are linked to its high constitutive activity. We identified BILF1 receptor orthologues in 12 previously uncharacterized LCVs from nonhuman primates (NHPs) of Old and New World origin. As 7TM receptors are excellent drug targets, our unique insight into the molecular mechanism of action of the BILF1 family and into the evolution of primate LCVs may enable validation of EBV BILF1 as a drug target for EBV-mediated diseases, as well as facilitating the design of drugs targeting EBV BILF1.
Clinical & Developmental Immunology | 2017
Katja Spiess; Mads G. Jeppesen; Mikkel Malmgaard-Clausen; Karen Krzywkowski; Thomas N. Kledal; Mette M. Rosenkilde
Immunotoxins as antiviral therapeutics are largely unexplored but have promising prospective due to their high selectivity potential and their unparalleled efficiency. One recent example targeted the virus-encoded G protein-coupled receptor US28 as a strategy for specific and efficient treatment of human cytomegalovirus (HCMV) infections. US28 is expressed on virus-infected cells and scavenge chemokines by rapid internalization. The chemokine-based fusion-toxin protein (FTP) consisted of a variant (F49A) of CX3CL1 specifically targeting US28 linked to the catalytic domain of Pseudomonas exotoxin A (PE). Here, we systematically seek to improve F49A-FTP by modifications in its three structural domains; we generated variants with (1) altered chemokine sequence (K14A, F49L, and F49E), (2) shortened and elongated linker region, and (3) modified toxin domain. Only F49L-FTP displayed higher selectivity in its binding to US28 versus CX3CR1, the endogenous receptor for CX3CL1, but this was not matched by a more selective killing of US28-expressing cells. A longer linker and different toxin variants decreased US28 affinity and selective killing. Thereby, F49A-FTP represents the best candidate for HCMV treatment. Many viruses encode internalizing receptors suggesting that not only HCMV but also, for instance, Epstein-Barr virus and Kaposis sarcoma-associated herpesvirus may be targeted by FTPs.
eLife | 2018
Timothy F Miles; Katja Spiess; Kevin M. Jude; Naotaka Tsutsumi; John S. Burg; Jessica R. Ingram; Deepa Waghray; Gertrud Malene Hjortø; Olav Larsen; Hidde L. Ploegh; Mette M. Rosenkilde; K. Christopher Garcia
Human cytomegalovirus has hijacked and evolved a human G-protein-coupled receptor into US28, which functions as a promiscuous chemokine sink’ to facilitate evasion of host immune responses. To probe the molecular basis of US28’s unique ligand cross-reactivity, we deep-sequenced CX3CL1 chemokine libraries selected on ‘molecular casts’ of the US28 active-state and find that US28 can engage thousands of distinct chemokine sequences, many of which elicit diverse signaling outcomes. The structure of a G-protein-biased CX3CL1-variant in complex with US28 revealed an entirely unique chemokine amino terminal peptide conformation and remodeled constellation of receptor-ligand interactions. Receptor signaling, however, is remarkably robust to mutational disruption of these interactions. Thus, US28 accommodates and functionally discriminates amongst highly degenerate chemokine sequences by sensing the steric bulk of the ligands, which distort both receptor extracellular loops and the walls of the ligand binding pocket to varying degrees, rather than requiring sequence-specific bonding chemistries for recognition and signaling.
European Journal of Medicinal Chemistry | 2018
Roxana-Maria Amărandi; Michael Lückmann; Motiejus Melynis; Mette Høy Jakobsen; Zohreh Fallah; Katja Spiess; Gertrud Malene Hjortø; Aurel Pui; Thomas M. Frimurer; Mette M. Rosenkilde
US28 is a broad-spectrum constitutively active G protein-coupled receptor encoded by the human cytomegalovirus (HCMV). It binds and scavenges multiple CC-chemokines as well as CX3CL1 (fractalkine) by constitutive receptor endocytosis to escape immune surveillance. We herein report the design and characterization of a novel library of US28-acting commercially available ligands based on the molecular descriptors of two previously reported US28-acting structures. Among these, we identify compounds capable of selectively recognizing CCL2-and CCL4-, but not CX3CL1-induced receptor conformations. Moreover, we find a direct correlation between the binding properties of small molecule ligands to CCL-induced conformations at the wild-type receptor and functional activity at the C-terminal truncated US28Δ300. As US28Δ300 is devoid of arrestin-recruitment and endocytosis, this highlights the potential usefulness of this construct in future drug discovery efforts aimed at specific US28 conformations. The new scaffolds identified herein represent valuable starting points for the generation of novel anti-HCMV therapies targeting the virus-encoded chemokine receptor US28 in a conformational-selective manner.
Blood | 2017
Kristine Niss Arfelt; Line Barington; Tau Benned-Jensen; Valentina Kubale; Alexander L. Kovalchuk; Viktorija Daugvilaite; Jan Pravsgaard Christensen; Allan Randrup Thomsen; Kristoffer L. Egerod; Maria R. Bassi; Katja Spiess; Thue W. Schwartz; Hongsheng Wang; Herbert C. Morse; Peter J. Holst; Mette M. Rosenkilde
Human and mouse chronic lymphocytic leukemia (CLL) develops from CD5+ B cells that in mice and macaques are known to define the distinct B1a B-cell lineage. B1a cells are characterized by lack of germinal center (GC) development, and the B1a cell population is increased in mice with reduced GC formation. As a major mediator of follicular B-cell migration, the G protein-coupled receptor Epstein-Barr virus-induced gene 2 (EBI2 or GPR183) directs B-cell migration in the lymphoid follicles in response to its endogenous ligands, oxysterols. Thus, upregulation of EBI2 drives the B cells toward the extrafollicular area, whereas downregulation is essential for GC formation. We therefore speculated whether increased expression of EBI2 would lead to an expanded B1 cell subset and, ultimately, progression to CLL. Here, we demonstrate that B-cell-targeted expression of human EBI2 (hEBI2) in mice reduces GC-dependent immune responses, reduces total immunoglobulin M (IgM) and IgG levels, and leads to increased proliferation and upregulation of cellular oncogenes. Furthermore, hEBI2 overexpression leads to an abnormally expanded CD5+ B1a B-cell subset (present as early as 4 days after birth), late-onset lymphoid cancer development, and premature death. These findings are highly similar to those observed in CLL patients and identify EBI2 as a promoter of B-cell malignancies.
Pharmacology Research & Perspectives | 2016
Christian Berg; Katja Spiess; Hans R. Lüttichau; Mette M. Rosenkilde
Since the discovery of HIVs use of CCR5 as the primary coreceptor in fusion, the focus on developing small‐molecule receptor antagonists for inhibition hereof has only resulted in one single drug, Maraviroc. We therefore investigated the possibility of using small‐molecule CCR5 agonists as HIV‐1 fusion inhibitors. A virus‐free cell‐based fusion reporter assay, based on mixing “effector cells” (expressing HIV Env and luciferase activator) with “target cells” (expressing CD4, CCR5 wild type or a selection of well‐described mutations, and luciferase reporter), was used as fusion readout. Receptor expression was evaluated by ELISA and fluorescence microscopy. On CCR5 WT, Maraviroc and Aplaviroc inhibited fusion with high potencies (EC50 values of 91 and 501 nM, respectively), whereas removal of key residues for both antagonists (Glu283Ala) or Maraviroc alone (Tyr251Ala) prevented fusion inhibition, establishing this assay as suitable for screening of HIV entry inhibitors. Both ligands inhibited HIV fusion on signaling‐deficient CCR5 mutations (Tyr244Ala and Trp248Ala). Moreover, the steric hindrance CCR5 mutation (Gly286Phe) impaired fusion, presumably by a direct hindrance of gp120 interaction. Finally, the efficacy switch mutation (Leu203Phe) – converting small‐molecule antagonists/inverse agonists to full agonists biased toward G‐protein activation – uncovered that also small‐molecule agonists can function as direct HIV‐1 cell entry inhibitors. Importantly, no agonist‐induced receptor internalization was observed for this mutation. Our studies of the pharmacodynamic requirements for HIV‐1 fusion inhibitors highlight the possibility of future development of biased ligands with selective targeting of the HIV–CCR5 interaction without interfering with the normal functionality of CCR5.