Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen N. Conneely is active.

Publication


Featured researches published by Karen N. Conneely.


Science | 2007

A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants.

Laura J. Scott; Karen L. Mohlke; Lori L. Bonnycastle; Cristen J. Willer; Yun Li; William L. Duren; Michael R. Erdos; Heather M. Stringham; Peter S. Chines; Anne U. Jackson; Ludmila Prokunina-Olsson; Chia-Jen Ding; Amy J. Swift; Tianle Hu; Randall Pruim; Rui Xiao; Xiao-Yi Li; Karen N. Conneely; Nancy Riebow; Andrew G. Sprau; Maurine Tong; Peggy P. White; Kurt N. Hetrick; Michael W. Barnhart; Craig W. Bark; Janet L. Goldstein; Lee Watkins; Fang Xiang; Jouko Saramies; Thomas A. Buchanan

Identifying the genetic variants that increase the risk of type 2 diabetes (T2D) in humans has been a formidable challenge. Adopting a genome-wide association strategy, we genotyped 1161 Finnish T2D cases and 1174 Finnish normal glucose-tolerant (NGT) controls with >315,000 single-nucleotide polymorphisms (SNPs) and imputed genotypes for an additional >2 million autosomal SNPs. We carried out association analysis with these SNPs to identify genetic variants that predispose to T2D, compared our T2D association results with the results of two similar studies, and genotyped 80 SNPs in an additional 1215 Finnish T2D cases and 1258 Finnish NGT controls. We identify T2D-associated variants in an intergenic region of chromosome 11p12, contribute to the identification of T2D-associated variants near the genes IGF2BP2 and CDKAL1 and the region of CDKN2A and CDKN2B, and confirm that variants near TCF7L2, SLC30A8, HHEX, FTO, PPARG, and KCNJ11 are associated with T2D risk. This brings the number of T2D loci now confidently identified to at least 10.


American Journal of Human Genetics | 2007

So Many Correlated Tests, So Little Time! Rapid Adjustment of P Values for Multiple Correlated Tests

Karen N. Conneely; Michael Boehnke

Contemporary genetic association studies may test hundreds of thousands of genetic variants for association, often with multiple binary and continuous traits or under more than one model of inheritance. Many of these association tests may be correlated with one another because of linkage disequilibrium between nearby markers and correlation between traits and models. Permutation tests and simulation-based methods are often employed to adjust groups of correlated tests for multiple testing, since conventional methods such as Bonferroni correction are overly conservative when tests are correlated. We present here a method of computing P values adjusted for correlated tests (P(ACT)) that attains the accuracy of permutation or simulation-based tests in much less computation time, and we show that our method applies to many common association tests that are based on multiple traits, markers, and genetic models. Simulation demonstrates that P(ACT) attains the power of permutation testing and provides a valid adjustment for hundreds of correlated association tests. In data analyzed as part of the Finland-United States Investigation of NIDDM Genetics (FUSION) study, we observe a near one-to-one relationship (r(2)>.999) between P(ACT) and the corresponding permutation-based P values, achieving the same precision as permutation testing but thousands of times faster.


Proceedings of the National Academy of Sciences of the United States of America | 2013

Childhood maltreatment is associated with distinct genomic and epigenetic profiles in posttraumatic stress disorder.

Divya Mehta; Torsten Klengel; Karen N. Conneely; Alicia K. Smith; Andre Altmann; Thaddeus W.W. Pace; Monika Rex-Haffner; Anne Loeschner; Mariya Gonik; Kristina B. Mercer; Bekh Bradley; Bertram Müller-Myhsok; Kerry J. Ressler; Elisabeth B. Binder

Childhood maltreatment is likely to influence fundamental biological processes and engrave long-lasting epigenetic marks, leading to adverse health outcomes in adulthood. We aimed to elucidate the impact of different early environment on disease-related genome-wide gene expression and DNA methylation in peripheral blood cells in patients with posttraumatic stress disorder (PTSD). Compared with the same trauma-exposed controls (n = 108), gene-expression profiles of PTSD patients with similar clinical symptoms and matched adult trauma exposure but different childhood adverse events (n = 32 and 29) were almost completely nonoverlapping (98%). These differences on the level of individual transcripts were paralleled by the enrichment of several distinct biological networks between the groups. Moreover, these gene-expression changes were accompanied and likely mediated by changes in DNA methylation in the same loci to a much larger proportion in the childhood abuse (69%) vs. the non-child abuse-only group (34%). This study is unique in providing genome-wide evidence of distinct biological modifications in PTSD in the presence or absence of exposure to childhood abuse. The findings that nonoverlapping biological pathways seem to be affected in the two PTSD groups and that changes in DNA methylation appear to have a much greater impact in the childhood-abuse group might reflect differences in the pathophysiology of PTSD, in dependence of exposure to childhood maltreatment. These results contribute to a better understanding of the extent of influence of differences in trauma exposure on pathophysiological processes in stress-related psychiatric disorders and may have implications for personalized medicine.


General Hospital Psychiatry | 2009

Trauma exposure and stress-related disorders in inner city primary care patients

Charles F. Gillespie; Bekh Bradley; Kristie Mercer; Alicia K. Smith; Karen N. Conneely; Mark Gapen; Tamara Weiss; Ann C. Schwartz; Joseph F. Cubells; Kerry J. Ressler

OBJECTIVE This study was undertaken to increase understanding of environmental risk factors for posttraumatic stress disorder (PTSD) and major depressive disorder (MDD) within an urban, impoverished, population. METHOD This study examined the demographic characteristics, patterns of trauma exposure, prevalence of PTSD and MDD, and predictors of posttraumatic stress and depressive symptomatology using a verbally presented survey and structured clinical interviews administered to low-income, primarily African-American (>93%) women and men seeking care in the primary care and obstetrics-gynecology clinics of an urban public hospital. RESULTS Of the sample, 87.8% (n=1256) reported some form of significant trauma in their lifetime. Accidents were the most common form of trauma exposure followed by interpersonal violence and sexual assault. Childhood level of trauma and adult level of trauma separately, and in combination, predicted level of adult PTSD and depressive symptomatology. The lifetime prevalence of PTSD was 46.2% and the lifetime prevalence of MDD was 36.7%. CONCLUSIONS These data document high levels of childhood and adult trauma exposure, principally interpersonal violence, in a large sample of an inner-city primary care population. Within this group of subjects, PTSD and depression are highly prevalent conditions.


American Journal of Medical Genetics | 2011

Differential immune system DNA methylation and cytokine regulation in post-traumatic stress disorder.

Alicia K. Smith; Karen N. Conneely; Varun Kilaru; Kristina B. Mercer; Tamara Weiss; Bekh Bradley; Yi-Lang Tang; Charles F. Gillespie; Joseph F. Cubells; Kerry J. Ressler

DNA methylation may mediate persistent changes in gene function following chronic stress. To examine this hypothesis, we evaluated African American subjects matched by age and sex, and stratified into four groups by post‐traumatic stress disorder (PTSD) diagnosis and history of child abuse. Total Life Stress (TLS) was also assessed in all subjects. We evaluated DNA extracted from peripheral blood using the HumanMethylation27 BeadChip and analyzed both global and site‐specific methylation. Methylation levels were examined for association with PTSD, child abuse history, and TLS using a linear mixed model adjusted for age, sex, and chip effects. Global methylation was increased in subjects with PTSD. CpG sites in five genes (TPR, CLEC9A, APC5, ANXA2, and TLR8) were differentially methylated in subjects with PTSD. Additionally, a CpG site in NPFFR2 was associated with TLS after adjustment for multiple testing. Notably, many of these genes have been previously associated with inflammation. Given these results and reports of immune dysregulation associated with trauma history, we compared plasma cytokine levels in these subjects and found IL4, IL2, and TNFα levels associated with PTSD, child abuse, and TLS. Together, these results suggest that psychosocial stress may alter global and gene‐specific DNA methylation patterns potentially associated with peripheral immune dysregulation. Our results suggest the need for further research on the role of DNA methylation in stress‐related illnesses.


Genome Research | 2012

Age-associated DNA methylation in pediatric populations

Reid S. Alisch; Benjamin G. Barwick; Pankaj Chopra; Leila K. Myrick; Glen A. Satten; Karen N. Conneely; Stephen T. Warren

DNA methylation (DNAm) plays diverse roles in human biology, but this dynamic epigenetic mark remains far from fully characterized. Although earlier studies uncovered loci that undergo age-associated DNAm changes in adults, little is known about such changes during childhood. Despite profound DNAm plasticity during embryogenesis, monozygotic twins show indistinguishable childhood methylation, suggesting that DNAm is highly coordinated throughout early development. Here we examine the methylation of 27,578 CpG dinucleotides in peripheral blood DNA from a cross-sectional study of 398 boys, aged 3-17 yr, and find significant age-associated changes in DNAm at 2078 loci. These findings correspond well with pyrosequencing data and replicate in a second pediatric population (N = 78). Moreover, we report a deficit of age-related loci on the X chromosome, a preference for specific nucleotides immediately surrounding the interrogated CpG dinucleotide, and a primary association with developmental and immune ontological functions. Meta-analysis (N = 1158) with two adult populations reveals that despite a significant overlap of age-associated loci, most methylation changes do not follow a lifelong linear pattern due to a threefold to fourfold higher rate of change in children compared with adults; consequently, the vast majority of changes are more accurately modeled as a function of logarithmic age. We therefore conclude that age-related DNAm changes in peripheral blood occur more rapidly during childhood and are imperfectly accounted for by statistical corrections that are linear in age, further suggesting that future DNAm studies should be matched closely for age.


Genome Research | 2012

Neonatal DNA methylation profile in human twins is specified by a complex interplay between intrauterine environmental and genetic factors, subject to tissue-specific influence

Lavinia Gordon; Jihoon E. Joo; Joseph E. Powell; Miina Ollikainen; Boris Novakovic; Xin Li; Roberta Andronikos; Mark N. Cruickshank; Karen N. Conneely; Alicia K. Smith; Reid S. Alisch; Ruth Morley; Peter M. Visscher; Jeffrey M. Craig; Richard Saffery

Comparison between groups of monozygotic (MZ) and dizygotic (DZ) twins enables an estimation of the relative contribution of genetic and shared and nonshared environmental factors to phenotypic variability. Using DNA methylation profiling of ∼20,000 CpG sites as a phenotype, we have examined discordance levels in three neonatal tissues from 22 MZ and 12 DZ twin pairs. MZ twins exhibit a wide range of within-pair differences at birth, but show discordance levels generally lower than DZ pairs. Within-pair methylation discordance was lowest in CpG islands in all twins and increased as a function of distance from islands. Variance component decomposition analysis of DNA methylation in MZ and DZ pairs revealed a low mean heritability across all tissues, although a wide range of heritabilities was detected for specific genomic CpG sites. The largest component of variation was attributed to the combined effects of nonshared intrauterine environment and stochastic factors. Regression analysis of methylation on birth weight revealed a general association between methylation of genes involved in metabolism and biosynthesis, providing further support for epigenetic change in the previously described link between low birth weight and increasing risk for cardiovascular, metabolic, and other complex diseases. Finally, comparison of our data with that of several older twins revealed little evidence for genome-wide epigenetic drift with increasing age. This is the first study to analyze DNA methylation on a genome scale in twins at birth, further highlighting the importance of the intrauterine environment on shaping the neonatal epigenome.


Proceedings of the National Academy of Sciences of the United States of America | 2008

A farnesyltransferase inhibitor prevents both the onset and late progression of cardiovascular disease in a progeria mouse model

Brian C. Capell; Michelle Olive; Michael R. Erdos; Kan Cao; Dina A. Faddah; Urraca Tavarez; Karen N. Conneely; Xuan Qu; Hong San; Santhi K. Ganesh; Xiaoyan Chen; Hedwig Avallone; Frank D. Kolodgie; Renu Virmani; Elizabeth G. Nabel; Francis S. Collins

Hutchinson-Gilford progeria syndrome (HGPS) is the most dramatic form of human premature aging. Death occurs at a mean age of 13 years, usually from heart attack or stroke. Almost all cases of HGPS are caused by a de novo point mutation in the lamin A (LMNA) gene that results in production of a mutant lamin A protein termed progerin. This protein is permanently modified by a lipid farnesyl group, and acts as a dominant negative, disrupting nuclear structure. Treatment with farnesyltransferase inhibitors (FTIs) has been shown to prevent and even reverse this nuclear abnormality in cultured HGPS fibroblasts. We have previously created a mouse model of HGPS that shows progressive loss of vascular smooth muscle cells in the media of the large arteries, in a pattern that is strikingly similar to the cardiovascular disease seen in patients with HGPS. Here we show that the dose-dependent administration of the FTI tipifarnib (R115777, Zarnestra) to this HGPS mouse model can significantly prevent both the onset of the cardiovascular phenotype as well as the late progression of existing cardiovascular disease. These observations provide encouraging evidence for the current clinical trial of FTIs for this rare and devastating disease.


Proceedings of the National Academy of Sciences of the United States of America | 2014

Common polymorphism in the oxytocin receptor gene (OXTR) is associated with human social recognition skills

David Skuse; Adriana Lori; Joseph F. Cubells; Irene Lee; Karen N. Conneely; Kaija Puura; Terho Lehtimäki; Elisabeth B. Binder; Larry J. Young

Significance The capacity to remember faces previously seen is strikingly variable between individuals, and differences in that skill are also highly heritable, implying that genetic variation exerts an important influence. Research with rodents has shown the oxytocin receptor (OXTR) plays a critical role in conspecific recognition. We examined whether genetic variants of the OXTR affect face recognition memory in families with an autistic child. We discovered that a single OXTR polymorphism accounted for up to 10% of variation in their test performance, in both UK and Finnish populations. Approximately 35% of family members were homozygous for the risk genotype. Our findings imply that oxytocin’s role in facilitating social recognition has been conserved across perceptual boundaries through evolution, from rodents to humans. The neuropeptides oxytocin and vasopressin are evolutionarily conserved regulators of social perception and behavior. Evidence is building that they are critically involved in the development of social recognition skills within rodent species, primates, and humans. We investigated whether common polymorphisms in the genes encoding the oxytocin and vasopressin 1a receptors influence social memory for faces. Our sample comprised 198 families, from the United Kingdom and Finland, in whom a single child had been diagnosed with high-functioning autism. Previous research has shown that impaired social perception, characteristic of autism, extends to the first-degree relatives of autistic individuals, implying heritable risk. Assessments of face recognition memory, discrimination of facial emotions, and direction of gaze detection were standardized for age (7–60 y) and sex. A common SNP in the oxytocin receptor (rs237887) was strongly associated with recognition memory in combined probands, parents, and siblings after correction for multiple comparisons. Homozygotes for the ancestral A allele had impairments in the range −0.6 to −1.15 SD scores, irrespective of their diagnostic status. Our findings imply that a critical role for the oxytocin system in social recognition has been conserved across perceptual boundaries through evolution, from olfaction in rodents to visual memory in humans.


Nucleic Acids Research | 2014

A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data.

Hao Feng; Karen N. Conneely; Hao Wu

DNA methylation is an important epigenetic modification that has essential roles in cellular processes including gene regulation, development and disease and is widely dysregulated in most types of cancer. Recent advances in sequencing technology have enabled the measurement of DNA methylation at single nucleotide resolution through methods such as whole-genome bisulfite sequencing and reduced representation bisulfite sequencing. In DNA methylation studies, a key task is to identify differences under distinct biological contexts, for example, between tumor and normal tissue. A challenge in sequencing studies is that the number of biological replicates is often limited by the costs of sequencing. The small number of replicates leads to unstable variance estimation, which can reduce accuracy to detect differentially methylated loci (DML). Here we propose a novel statistical method to detect DML when comparing two treatment groups. The sequencing counts are described by a lognormal-beta-binomial hierarchical model, which provides a basis for information sharing across different CpG sites. A Wald test is developed for hypothesis testing at each CpG site. Simulation results show that the proposed method yields improved DML detection compared to existing methods, particularly when the number of replicates is low. The proposed method is implemented in the Bioconductor package DSS.

Collaboration


Dive into the Karen N. Conneely's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francis S. Collins

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge