Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Karen Niederreither is active.

Publication


Featured researches published by Karen Niederreither.


Nature Genetics | 1999

Embryonic retinoic acid synthesis is essential for early mouse post-implantation development

Karen Niederreither; Vemparala Subbarayan; Pascal Dollé; Pierre Chambon

A number of studies have suggested that the active derivative of vitamin A, retinoic acid (RA), may be important for early development of mammalian embryos. Severe vitamin A deprivation in rodents results in maternal infertility, precluding a thorough investigation of the role of RA during embryogenesis. Here we show that production of RA by the retinaldehyde dehydrogenase-2 (Raldh2) enzyme is required for mouse embryo survival and early morphogenesis. Raldh2 is an NAD-dependent aldehyde dehydrogenase with high substrate specificity for retinaldehyde. Its pattern of expression during mouse development has suggested that it may be responsible for embryonic RA synthesis. We generated a targeted disruption of the mouse Raldh2 gene and found that Raldh2–/– embryos, which die at midgestation without undergoing axial rotation (body turning), exhibit shortening along the anterioposterior axis and do not form limb buds. Their heart consists of a single, medial, dilated cavity. Their frontonasal region is truncated and their otocysts are severely reduced. These defects result from a block in embryonic RA synthesis, as shown by the lack of activity of RA-responsive transgenes, the altered expression of an RA-target homeobox gene and the near full rescue of the mutant phenotype by maternal RA administration. Our data establish that RA synthesized by the post-implantation mammalian embryo is an essential developmental hormone whose lack leads to early embryo death.


Nature Reviews Genetics | 2008

Retinoic acid in development: towards an integrated view

Karen Niederreither; Pascal Dollé

Retinoic acid (RA) has complex and pleiotropic functions during vertebrate development. Recent work in several species has increased our understanding of the roles of RA as a signalling molecule. These functions rely on a tight control of RA distribution within embryonic tissues through the combined action of synthesizing and metabolizing enzymes, possibly leading to diffusion gradients. Also important is the switching of nuclear receptors from a transcriptionally repressing state to an activating state. In addition, cross-talk with other key embryonic signals, especially fibroblast growth factors (FGFs) and sonic hedgehog (SHH), is being uncovered. Some of these functions could be maintained throughout the life of an organism to regulate cell-lineage decisions and/or the differentiation of stem cell populations, highlighting possibilities for regenerative medicine.


Mechanisms of Development | 1997

Restricted expression and retinoic acid-induced downregulation of the retinaldehyde dehydrogenase type 2 (RALDH-2) gene during mouse development

Karen Niederreither; Peter McCaffery; Ursula C. Dräger; Pierre Chambon; Pascal Dollé

Retinaldehyde dehydrogenase type 2 (RALDH-2) was identified as a major retinoic acid generating enzyme in the early embryo. Here we report the expression domains of the RALDH-2 gene during mouse embryogenesis, which are likely to indicate regions of endogenous retinoic acid (RA) synthesis. During early gastrulation, RALDH-2 is expressed in the mesoderm adjacent to the node and primitive streak. At the headfold stage, mesodermal expression is restricted to posterior regions up to the base of the headfolds. Later, RALDH-2 is transiently expressed in the undifferentiated somites and the optic vesicles, and more persistently along the lateral walls of the intraembryonic coelom and around the hindgut diverticulum. The RALDH-2 expression domains in differentiating limbs, which include presumptive interdigital regions, coincide with, but slightly precede, those of the RA-inducible RAR beta gene. The RALDH-2 gene is also expressed in specific regions of the developing head, including the tooth buds, inner ear, meninges and pituitary gland, and in several viscera. Administration of a teratogenic dose of RA at embryonic day 8.5 results in downregulation of RALDH-2 transcript levels in caudal regions of the embryo, and may reflect a mechanism of negative feedback regulation of RA synthesis.


The EMBO Journal | 2003

NSD1 is essential for early post-implantation development and has a catalytically active SET domain

Geetha V. Rayasam; Olivia Wendling; Pierre-Olivier Angrand; Manuel Mark; Karen Niederreither; Luyan Song; Thierry Lerouge; Gordon L. Hager; Pierre Chambon; Régine Losson

The nuclear receptor‐binding SET domain‐containing protein (NSD1) belongs to an emerging family of proteins, which have all been implicated in human malignancy. To gain insight into the biological functions of NSD1, we have generated NSD1‐deficient mice by gene disruption. Homozygous mutant NSD1 embryos, which initiate mesoderm formation, display a high incidence of apoptosis and fail to complete gastrulation, indicating that NSD1 is a developmental regulatory protein that exerts function(s) essential for early post‐implantation development. We have also examined the enzymatic potential of NSD1 and found that its SET domain possesses intrinsic histone methyltransferase activity with specificity for Lys36 of histone H3 (H3‐K36) and Lys20 of histone H4 (H4‐K20).


Developmental Biology | 2003

Cardiac T-box factor Tbx20 directly interacts with Nkx2-5, GATA4, and GATA5 in regulation of gene expression in the developing heart

Mauro W. Costa; David A. Elliott; Scott A. Rankin; Saskia Jp Haast; Donna Lai; Lachlan Pa McDonald; Karen Niederreither; Pascal Dollé; Benoit G. Bruneau; Aaron M. Zorn; Richard P. Harvey

Tbx20 is a member of the T-box transcription factor family expressed in the forming hearts of vertebrate and invertebrate embryos. We report here analysis of Tbx20 expression during murine cardiac development and assessment of DNA-binding and transcriptional properties of Tbx20 isoforms. Tbx20 was expressed in myocardium and endocardium, including high levels in endocardial cushions. cDNAs generated by alternative splicing encode at least four Tbx20 isoforms, and Tbx20a uniquely carried strong transactivation and transrepression domains in its C terminus. Isoforms with an intact T-box bound specifically to DNA sites resembling the consensus brachyury half site, although with less avidity compared with the related factor, Tbx5. Tbx20 physically interacted with cardiac transcription factors Nkx2-5, GATA4, and GATA5, collaborating to synergistically activate cardiac gene expression. Among cardiac GATA factors, there was preferential synergy with GATA5, implicated in endocardial differentiation. In Xenopus embryos, enforced expression of Tbx20a, but not Tbx20b, led to induction of mesodermal and endodermal lineage markers as well as cell migration, indicating that the long Tbx20a isoform uniquely bears functional domains that can alter gene expression and developmental behaviour in an in vivo context. We propose that Tbx20 plays an integrated role in the ancient myogenic program of the heart, and has been additionally coopted during evolution of vertebrates for endocardial cushion development.


Mechanisms of Development | 2002

Differential expression of retinoic acid-synthesizing (RALDH) enzymes during fetal development and organ differentiation in the mouse

Karen Niederreither; Valérie Fraulob; Jean-Marie Garnier; Pierre Chambon; Pascal Dollé

Three retinaldehyde dehydrogenases (RALDH1, RALDH2 and RALDH3), which catalyze the oxidation of retinaldehyde into retinoic acid, have been shown to be differentially expressed during early embryogenesis. Here, we report their differential expression patterns throughout later mouse organogenesis. Raldh1 is prominently expressed in developing lung (notably in bronchial and tracheal epithelia), and shows stage-specific expression in stomach and intestine epithelial and mesenchymal layers. Raldh3 expression is specific to the differentiating intestinal lamina propria. Raldh2 is expressed throughout the kidney nephrogenic zone, whereas Raldh1 and Raldh3 are mostly expressed in collecting duct epithelia. Raldh3 expression is more restricted than that of Raldh1 in the urogenital tract and sex gland epithelia, whereas Raldh2 expression is mesenchymal. Raldh1 is coexpressed with Raldh2 in the early heart epicardium, and is later specifically expressed in developing heart valves. All three genes exhibit distinct expression patterns in respiratory and olfactory epithelia and/or mesenchymes, and in developing teeth. Only Raldh1 expression is seen after birth in specific brain structures. These data indicate a requirement for regulated RA synthesis in various differentiating organs.


Nature Genetics | 2002

Genetic evidence that oxidative derivatives of retinoic acid are not involved in retinoid signaling during mouse development.

Karen Niederreither; Suzan Abu-Abed; Brigitte Schuhbaur; Martin Petkovich; Pierre Chambon; Pascal Dollé

Retinoic acid, the active derivative of vitamin A (retinol), is a hormonal signaling molecule that acts in developing and adult tissues. The Cyp26a1 (cytochrome p450, 26) protein metabolizes retinoic acid into more polar hydroxylated and oxidized derivatives. Whether some of these derivatives are biologically active metabolites has been debated. Cyp26a1−/− mouse fetuses have lethal morphogenetic phenotypes mimicking those generated by excess retinoic acid administration, indicating that human CYP26A1 may be essential in controlling retinoic acid levels during development. This hypothesis suggests that the Cyp26a1−/− phenotype could be rescued under conditions in which embryonic retinoic acid levels are decreased. We show that Cyp26a1−/− mice are phenotypically rescued by heterozygous disruption of Aldh1a2 (also known as Raldh2), which encodes a retinaldehyde dehydrogenase responsible for the synthesis of retinoic acid during early embryonic development. Aldh1a2 haploinsufficiency prevents the appearance of spina bifida and rescues the development of posterior structures (sacral/caudal vertebrae, hindgut, urogenital tract), while partly preventing cervical vertebral transformations and hindbrain pattern alterations in Cyp26a1−/− mice. Thus, some of these double-mutant mice can reach adulthood. This study is the first report of a mutation acting as a dominant suppressor of a lethal morphogenetic mutation in mammals. We provide genetic evidence that ALDH1A2 and CYP26A1 activities concurrently establish local embryonic retinoic acid levels that must be finely tuned to allow posterior organ development and to prevent spina bifida.


Nature Immunology | 2009

Chemokine CXCL13 is essential for lymph node initiation and is induced by retinoic acid and neuronal stimulation

Serge A. van de Pavert; Brenda J. Olivier; Gera Goverse; Mark F. R. Vondenhoff; Mascha Greuter; Patrick Beke; Kim Kusser; Uta E. Höpken; Martin Lipp; Karen Niederreither; Rune Blomhoff; Kasia Sitnik; William W. Agace; Troy D. Randall; Wouter J. de Jonge; Reina E. Mebius

The location of embryonic lymph node development is determined by the initial clustering of lymphoid tissue–inducer (LTi) cells. Here we demonstrate that both the chemokine CXCL13 and the chemokine CCL21 attracted LTi cells at embryonic days 12.5–14.5 and that initial clustering depended exclusively on CXCL13. Retinoic acid (RA) induced early CXCL13 expression in stromal organizer cells independently of lymphotoxin signaling. Notably, neurons adjacent to the lymph node anlagen expressed enzymes essential for RA synthesis. Furthermore, stimulation of parasymphathetic neural output in adults led to RA receptor (RAR)-dependent induction of CXCL13 in the gut. Therefore, our data show that the initiation of lymph node development is controlled by RA-mediated expression of CXCL13 and suggest that RA may be provided by adjacent neurons.


Development | 2003

The regional pattern of retinoic acid synthesis by RALDH2 is essential for the development of posterior pharyngeal arches and the enteric nervous system.

Karen Niederreither; Julien Vermot; Isabelle Le Roux; Brigitte Schuhbaur; Pierre Chambon; Pascal Dollé

Targeted inactivation of the mouse retinaldehyde dehydrogenase 2 (RALDH2/ALDH1a2), the enzyme responsible for early embryonic retinoic acid synthesis, is embryonic lethal because of defects in early heart morphogenesis. Transient maternal RA supplementation from E7.5 to (at least) E8.5 rescues most of these defects, but the supplemented Raldh2–/– mutants die prenatally, from a lack of septation of the heart outflow tract (Niederreither, K., Vermot, J., Messaddeq, N., Schuhbaur, B., Chambon, P. and Dollé, P. (2001). Development 128, 1019-1031). We have investigated the developmental basis for this defect, and found that the RA-supplemented Raldh2–/– embryos exhibit impaired development of their posterior (3rd-6th) branchial arch region. While the development of the first and second arches and their derivatives, as well as the formation of the first branchial pouch, appear to proceed normally, more posterior pharyngeal pouches fail to form and the pharyngeal endoderm develops a rudimentary, pouch-like structure. All derivatives of the posterior branchial arches are affected. These include the aortic arches, pouch-derived organs (thymus, parathyroid gland) and post-otic neural crest cells, which fail to establish segmental migratory pathways and are misrouted caudally. Patterning and axonal outgrowth of the posterior (9th-12th) cranial nerves is also altered. Vagal crest deficiency in Raldh2–/– mutants leads to agenesis of the enteric ganglia, a condition reminiscent of human Hirschprungs disease. In addition, we provide evidence that: (i) wildtype Raldh2 expression is restricted to the posteriormost pharyngeal mesoderm; (ii) endogenous RA response occurs in both the pharyngeal endoderm and mesoderm, and extends more rostrally than Raldh2 expression up to the 2nd arch; (iii) RA target genes (Hoxa1, Hoxb1) are downregulated in both the pharyngeal endoderm and mesoderm of mutant embryos. Thus, RALDH2 plays a crucial role in producing RA required for pharyngeal development, and RA is one of the diffusible mesodermal signals that pattern the pharyngeal endoderm.


Nature Genetics | 2005

Apoptosis induced by vitamin A signaling is crucial for connecting the ureters to the bladder.

Ekatherina Batourina; Sheaumei Tsai; Sarah M. Lambert; Preston C. Sprenkle; Renata Viana; Sonia Dutta; Terry W. Hensle; Fengwei Wang; Karen Niederreither; Andrew P. McMahon; Thomas J. Carroll; Cathy Mendelsohn

Removal of toxic substances from the blood depends on patent connections between the kidney, ureters and bladder that are established when the ureter is transposed from its original insertion site in the male genital tract to the bladder. This transposition is thought to occur as the trigone forms from the common nephric duct and incorporates into the bladder. Here we re-examine this model in the context of normal and abnormal development. We show that the common nephric duct does not differentiate into the trigone but instead undergoes apoptosis, a crucial step for ureter transposition controlled by vitamin A–induced signals from the primitive bladder. Ureter abnormalities occur in 1–2% of the human population and can cause obstruction and end-stage renal disease. These studies provide an explanation for ureter defects underlying some forms of obstruction in humans and redefine the current model of ureter maturation.

Collaboration


Dive into the Karen Niederreither's collaboration.

Top Co-Authors

Avatar

Pascal Dollé

French Institute of Health and Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Julien Vermot

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar

Brigitte Schuhbaur

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Wellington V. Cardoso

Columbia University Medical Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

R. Romand

Blaise Pascal University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge